IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i2p549-568.html
   My bibliography  Save this article

Prediction of rock burst classification using the technique of cloud models with attribution weight

Author

Listed:
  • Zaobao Liu
  • Jianfu Shao
  • Weiya Xu
  • Yongdong Meng

Abstract

Rock burst is one of the common failures in hard rock mining and civil construction. This study focuses on the prediction of rock burst classification with case instances using cloud models and attribution weight. First, cloud models are introduced briefly related to the rock burst classification problem. Then, the attribution weight method is presented to quantify the contribution of each rock burst indicator for classification. The approach is implemented to predict the classes of rock burst intensity for the 164 rock burst instances collected. The clustering figures are generated by cloud models for each rock burst class. The computed weight values of the indicators show that the stress ratio $$ Ts=\sigma_{\theta } /\sigma_{c} $$ Ts = σ θ / σ c is the most vulnerable parameter and the elastic strain energy storage index W et and the brittleness factor $$ B=\sigma_{c} /\sigma_{t} $$ B = σ c / σ t take the second and third place, respectively, contributing to the rock burst classification. Besides, the predictive performance of the strategy introduced in this study is compared with that of some empirical methods, the regression analysis, the neural networks and support vector machines. The results turn out that cloud models perform better than the empirical methods and regression analysis and have superior generalization ability than the neural networks in modelling the rock burst cases. Hence, cloud models are feasible and applicable for prediction of rock burst classification. Finally, different models with varying indicators are investigated to validate the parameter sensitivity results obtained by cloud clustering analysis and regression analysis in context to rock burst classification. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Zaobao Liu & Jianfu Shao & Weiya Xu & Yongdong Meng, 2013. "Prediction of rock burst classification using the technique of cloud models with attribution weight," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 549-568, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:549-568
    DOI: 10.1007/s11069-013-0635-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0635-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0635-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
    2. Pijush Samui, 2011. "Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 811-822, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.
    2. K. Cheng & Q. Fu & J. Meng & T. X. Li & W. Pei, 2018. "Analysis of the Spatial Variation and Identification of Factors Affecting the Water Resources Carrying Capacity Based on the Cloud Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2767-2781, June.
    3. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    4. Jianhong Chen & Yakun Zhao & Zhe Liu & Shan Yang & Zhiyong Zhou, 2023. "Prediction of Rockburst Propensity Based on Intuitionistic Fuzzy Set—Multisource Combined Weights—Improved Attribute Measurement Model," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    5. Yakun Zhao & Jianhong Chen & Shan Yang & Zhe Liu, 2022. "Game Theory and an Improved Maximum Entropy-Attribute Measure Interval Model for Predicting Rockburst Intensity," Mathematics, MDPI, vol. 10(15), pages 1-22, July.
    6. Yuantian Sun & Guichen Li & Sen Yang, 2021. "Rockburst Interpretation by a Data-Driven Approach: A Comparative Study," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    7. Ning Li & R. Jimenez, 2018. "A logistic regression classifier for long-term probabilistic prediction of rock burst hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 197-215, January.
    8. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    9. Yumin Wang & Xian’e Zhang & Yifeng Wu, 2020. "Eutrophication Assessment Based on the Cloud Matter Element Model," IJERPH, MDPI, vol. 17(1), pages 1-19, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobo Liu & Lei Yang & Xingfan Zhang, 2019. "A Model to Predict Crosscut Stress Based on an Improved Extreme Learning Machine Algorithm," Energies, MDPI, vol. 12(5), pages 1-15, March.
    2. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    3. Xiaojia Ji & Xuanyi Lu & Chunhong Guo & Weiwei Pei & Hui Xu, 2022. "Predictions of Geological Interface Using Relevant Vector Machine with Borehole Data," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    4. Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
    5. Jyotirmayee Behera & Ajit Kumar Pasayat & Harekrushna Behera, 2022. "COVID-19 Vaccination Effect on Stock Market and Death Rate in India," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 29(4), pages 651-673, December.
    6. Elivelto Ebermam & Helder Knidel & Renato A. Krohling, 2022. "Development of a hybrid method for stock trading based on TOPSIS, EMD and ELM," Papers 2206.06723, arXiv.org.
    7. Yen-Ming Chiang & Wei-Guo Cheng & Fi-John Chang, 2012. "A hybrid artificial neural network-based agri-economic model for predicting typhoon-induced losses," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 769-787, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:549-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.