IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i2p351-371.html
   My bibliography  Save this article

Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal

Author

Listed:
  • Naresh Vissa
  • A. Satyanarayana
  • B. Prasad Kumar

Abstract

The aim of the present study is to understand the impact of oceanic heat potential in relation to the intensity of tropical cyclones (TC) in the Bay of Bengal during the pre-monsoon (April–May) and post-monsoon (October–November) cyclones for the period 2006–2010. To accomplish this, the two-layer gravity model (TLGM) is employed to estimate daily tropical cyclone heat potential (TCHP) utilizing satellite altimeter data, satellite sea surface temperature (SST), and a high-resolution comprehensive ocean atlas developed for Indian Ocean, subsequently validated with in situ ARGO profiles. Accumulated TCHP (ATCHP) is estimated from genesis to the maximum intensity of cyclone in terms of minimum central pressure along their track of all the cyclones for the study period using TLGM generated TCHP and six-hourly National Centre for Environmental Prediction Climate Forecast System Reanalysis data. Similarly, accumulated sea surface heat content (ASSHC) is estimated using satellite SST. In this study, the relationship between ATCHP and ASSHC with the central pressure (CP) which is a function of TC intensity is developed. Results reveal a distinct relationship between ATCHP and CP during both the seasons. Interestingly, it is seen that requirement of higher ATCHP during pre-monsoon cyclones is required to attain higher intensity compared to post-monsoon cyclones. It is mainly attributed to the presence of thick barrier layer (BL) resulting in higher enthalpy fluxes during post-monsoon period, where as such BL is non-existent during pre-monsoon period. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Naresh Vissa & A. Satyanarayana & B. Prasad Kumar, 2013. "Intensity of tropical cyclones during pre- and post-monsoon seasons in relation to accumulated tropical cyclone heat potential over Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 351-371, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:351-371
    DOI: 10.1007/s11069-013-0625-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0625-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0625-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Sadhuram & B. Rao & D. Rao & P. Shastri & M. Subrahmanyam, 2004. "Seasonal Variability of Cyclone Heat Potential in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 32(2), pages 191-209, June.
    2. Kerry A. Emanuel, 1999. "Thermodynamic control of hurricane intensity," Nature, Nature, vol. 401(6754), pages 665-669, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debashis Paul & Jagabandhu Panda & Ashish Routray, 2022. "Ocean and atmospheric characteristics associated with the cyclogenesis and rapid intensification of NIO super cyclonic storms during 1981–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 261-289, October.
    2. Kumar Ravi Prakash & Tanuja Nigam & Vimlesh Pant & Navin Chandra, 2021. "On the interaction of mesoscale eddies and a tropical cyclone in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1981-2001, April.
    3. R. S. Akhila & J. Kuttippurath & R. Rahul & A. Chakraborty, 2022. "Genesis and simultaneous occurrences of the super cyclone Kyarr and extremely severe cyclone Maha in the Arabian Sea in October 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1133-1150, September.
    4. K. K. Basheer Ahammed & Arvind Chandra Pandey & Bikash Ranjan Parida & Wasim & Chandra Shekhar Dwivedi, 2023. "Impact Assessment of Tropical Cyclones Amphan and Nisarga in 2020 in the Northern Indian Ocean," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    5. Iris Grossmann & M. Morgan, 2011. "Tropical cyclones, climate change, and scientific uncertainty: what do we know, what does it mean, and what should be done?," Climatic Change, Springer, vol. 108(3), pages 543-579, October.
    6. Bishnu Kumar & Arun Chakraborty, 2011. "Movement of seasonal eddies and its relation with cyclonic heat potential and cyclogenesis points in the Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1671-1689, December.
    7. Ya-Ting Chang & I-I Lin & Hsiao-Ching Huang & Yi-Chun Liao & Chun-Chi Lien, 2020. "The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea," Sustainability, MDPI, vol. 12(3), pages 1-13, January.
    8. Karthik Balaguru & David R. Judi & L. Ruby Leung, 2016. "Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity," Climatic Change, Springer, vol. 138(1), pages 99-110, September.
    9. David Bacon & Nash′at Ahmad & Thomas Dunn & S. Gopalakrishnan & Mary Hall & Ananthakrishna Sarma, 2007. "Hurricane track forecasting with OMEGA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(3), pages 457-470, June.
    10. Ding-Rong Wu & Zhe-Wen Zheng & Ganesh Gopalakrishnan & Chung-Ru Ho & Quanan Zheng, 2021. "Barrier Layer Characteristics for Different Temporal Scales and Its Implication to Tropical Cyclone Enhancement in the Western North Pacific," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    11. I.-I. Lin & Gustavo Goni & John Knaff & Cristina Forbes & M. Ali, 2013. "Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(3), pages 1481-1500, April.
    12. M. Subrahmanyam, 2015. "Impact of typhoon on the north-west Pacific sea surface temperature: a case study of Typhoon Kaemi (2006)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 569-582, August.
    13. Russell H. Glazer & M. M. Ali, 2020. "An improved potential intensity estimate for Bay of Bengal tropical cyclones," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2635-2644, December.
    14. Iam-Fei Pun & Johnny C. L. Chan & I.-I. Lin & Kelvin T. F. Chan & James F. Price & Dong Shan Ko & Chun-Chi Lien & Yu-Lun Wu & Hsiao-Ching Huang, 2019. "Rapid Intensification of Typhoon Hato (2017) over Shallow Water," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    15. Y. Sadhuram & K. Maneesha & T. Ramana Murty, 2012. "Intensification of Aila (May 2009) due to a warm core eddy in the north Bay of Bengal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(3), pages 1515-1525, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:351-371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.