IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v68y2013i2p271-319.html
   My bibliography  Save this article

Seismic hazard across Bulgaria and neighbouring areas: regional and site-specific maximum credible magnitudes and earthquake perceptibility

Author

Listed:
  • Thomas Bayliss
  • Paul Burton

Abstract

A probabilistic seismic hazard assessment is developed here using maximum credible earthquake magnitude statistics and earthquake perceptibility hazard. Earthquake perceptibility hazard is defined as the probability a site perceives ground shaking equal to or greater than a selected ground motion level X, resulting from an earthquake of magnitude M, and develops estimates for the most perceptible earthquake magnitude, M P(max) . Realistic and usable maximum magnitude statistics are obtained from both whole process and part process statistical recurrence models. These approaches are extended to develop relationships between perceptible earthquake magnitude hazard and maximum magnitude recurrence models that are governed by asymptotic and finite return period properties, respectively. Integrated perceptibility curves illustrating the probability of a specific level of perceptible ground motion due to all earthquakes over the magnitude range extending from −∞ to a magnitude M i are then developed from reviewing site-specific magnitude perceptibility. These lead on to achieving site-specific annual probability of exceedance hazard curves for the example cities of Sofia and Thessaloniki for both horizontal ground acceleration and ground velocity. Both the maximum credible earthquake magnitude M 3 and the most perceptible earthquake magnitude M P(max) are of importance to the earthquake engineer when approaching anti-seismic building design. Both forms of hazard are illustrated using contoured hazard maps for the region bounded by 39°–45°N, 19°–29°E. Patterns are observed for these magnitude hazard estimates—especially M P(max) specific to horizontal ground acceleration and horizontal ground velocity—and compared to inferred patterns of crustal deformation across the region. The full geographic region considered is estimated to be subject to a maximum credible earthquake magnitude M 3 —estimated using cumulative seismic moment release statistics—of 7.53 M w , calculated from the full content of the adopted earthquake catalogue, while Bulgaria’s capital, Sofia, is estimated a comparable value of 7.36 M w . Sofia is also forecast most perceptible earthquake magnitudes for the lowest levels considered for horizontal ground acceleration of M PA(50) = 7.20 M w and horizontal ground velocity of M PV(5) = 7.23 M w for a specimen focal depth of 15 km. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Thomas Bayliss & Paul Burton, 2013. "Seismic hazard across Bulgaria and neighbouring areas: regional and site-specific maximum credible magnitudes and earthquake perceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 271-319, September.
  • Handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:271-319
    DOI: 10.1007/s11069-013-0590-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-013-0590-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-013-0590-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:68:y:2013:i:2:p:271-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.