IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v66y2013i2p781-808.html
   My bibliography  Save this article

Analysis of the Marmara flood in Turkey, 7–10 September 2009: an assessment from hydrometeorological perspective

Author

Listed:
  • Ali Kömüşcü
  • Seyfullah Çelik

Abstract

Turkey often suffers from flood-related damages and causalities as a result of intense and prolonged storms that are usually convective or cyclonic in origin. The impact is more distinctive in Aegean and Mediterranean coasts of the country where quantity and distribution of rainfall is influenced by Mediterranean cyclones, especially in late autumn and early winter. The floods sometimes became very hazardous when combined with urbanization effects, especially in the densely populated coastal communities and major cities. Severe weather was marked in the early parts of September 2009 that produced record-setting rainfall amounts across the Marmara region of Turkey and led a series of flash floods which affected İstanbul and Tekirdağ provinces especially. The overall flooding was the result of successive and persistent intense rainfall episodes over a 3-day period which produced more than 250-mm rainfall over portions of the region. The floods resulted in death of 32 people and caused extensive environmental and infrastructural damage in the region. This study provides in-depth analysis of hydrometeorological conditions that led to the occurrence of flash floods in Marmara region during 7–10 September 2009 period and also discusses non-meteorological factors that exacerbated the flooding conditions. Main meteorological settings that led to intense storms were presence of cold air in the upper atmosphere, a slow-moving quasi-stationary trough, and continuous resupply of moisture to the surface low from the warm Aegean Sea. Radar images showed the development of clusters of convective cells that remained quasi-stationary over portions of the region. The 24-h rainfall amounts varied between 100 and 253 mm in most parts of the region during the flooding period with diverse spatial patterns. The southern locations received the highest amount of the rainfall as compared to stations located in northern slopes of the region. Typical effects of orography that enhance rainfall in the coastal areas, however, were not observed during the Marmara flood. Some features of the synoptic pattern observed prior and during the flooding period, supported the back door cold front concept. This is characterized with easterly to northeasterly surface flows forced by an anticyclone, advection of cold continental air over the warm Black Sea which provided anomalous moisture to trigger cyclogenesis over the Marmara region, and falling of core of the intense rainfall over the Marmara Sea. The study concluded that although the meteorological settings were favorable for the convective rainfalls, urbanization factors, such as land use changes and occupation of flood plains, played major role in aggravating the worst flood observed in the region in recent decades. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Ali Kömüşcü & Seyfullah Çelik, 2013. "Analysis of the Marmara flood in Turkey, 7–10 September 2009: an assessment from hydrometeorological perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 781-808, March.
  • Handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:781-808
    DOI: 10.1007/s11069-012-0521-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0521-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0521-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nurünnisa Usul & Burak Turan, 2006. "Flood forecasting and analysis within the Ulus Basin, Turkey, using geographic information systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 39(2), pages 213-229, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamze Koç & Annegret H. Thieken, 2018. "The relevance of flood hazards and impacts in Turkey: What can be learned from different disaster loss databases?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 375-408, March.
    2. Krellenberg, Kerstin & Turhan, Ethemcan, 2017. "How to respond to climate change at the local level: A guideline for Turkish cities [İklim değişikliğine yerel düzeyde nasıl yanıt verilmelidir? Türkiye Kentleri için Bir Kılavuz]," UFZ Reports 03/2017, Helmholtz Centre for Environmental Research (UFZ).
    3. Bahtiyar Efe & Anthony R. Lupo & Ali Deniz, 2020. "Extreme temperatures linked to the atmospheric blocking events in Turkey between 1977 and 2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1879-1898, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Zeinivand & F. De Smedt, 2010. "Prediction of snowmelt floods with a distributed hydrological model using a physical snow mass and energy balance approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 451-468, August.
    2. Hakan Aksu & Mahmut Cetin & Hafzullah Aksoy & Sait Genar Yaldiz & Isilsu Yildirim & Gulsah Keklik, 2022. "Spatial and temporal characterization of standard duration-maximum precipitation over Black Sea Region in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2379-2405, April.
    3. Mohammad Shehata & Hideki Mizunaga, 2019. "Geospatial analysis of surface hydrological parameters for Kyushu Island, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 33-52, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:66:y:2013:i:2:p:781-808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.