IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v62y2012i3p937-952.html
   My bibliography  Save this article

Seismicity and source parameters of moderate earthquakes in Sikkim Himalaya

Author

Listed:
  • Pinki Hazarika
  • M. Ravi Kumar

Abstract

In this study, we accurately relocate 360 earthquakes in the Sikkim Himalaya through the application of the double-difference algorithm to 4 years of data accrued from a eleven-station broadband seismic network. The analysis brings out two major clusters of seismicity—one located in between the main central thrust (MCT) and the main boundary thrust (MBT) and the other in the northwest region of Sikkim that is site to the devastating Mw6.9 earthquake of September 18, 2011. Keeping in view the limitations imposed by the Nyquist frequency of our data (10 Hz), we select 9 moderate size earthquakes (5.3 ≥ Ml ≥ 4) for the estimation of source parameters. Analysis of shear wave spectra of these earthquakes yields seismic moments in the range of 7.95 × 10 21 dyne-cm to 6.31 × 10 23 dyne-cm and corner frequencies in the range of 1.8–6.25 Hz. Smaller seismic moments obtained in Sikkim when compared with the rest of the Himalaya vindicates the lower seismicity levels in the region. Interestingly, it is observed that most of the events having larger seismic moment occur between MBT and MCT lending credence to our observation that this is the most active portion of Sikkim Himalaya. The estimates of stress drop and source radius range from 48 to 389 bar and 0.225 to 0.781 km, respectively. Stress drops do not seem to correlate with the scalar seismic moments affirming the view that stress drop is independent over a wide moment range. While the continental collision scenario can be invoked as a reason to explain a predominance of low stress drops in the Himalayan region, those with relatively higher stress drops in Sikkim Himalaya could be attributed to their affinity with strike-slip source mechanisms. Least square regression of the scalar seismic moment (M 0 ) and local magnitude (Ml) results in a relation LogM 0 = (1.56 ± 0.05)Ml + (8.55 ± 0.12) while that between moment magnitude (M w ) and local magnitude as M w = (0.92 ± 0.04)Ml + (0.14 ± 0.06). These relations could serve as useful inputs for the assessment of earthquake hazard in this seismically active region of Himalaya. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Pinki Hazarika & M. Ravi Kumar, 2012. "Seismicity and source parameters of moderate earthquakes in Sikkim Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 937-952, July.
  • Handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:937-952
    DOI: 10.1007/s11069-012-0122-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-012-0122-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-012-0122-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amrita Yadav & D. Shashidhar & K. Mallika & N. Rao & Sunil Rohilla & H. Satyanarayana & D. Srinagesh & Harsh Gupta, 2013. "Source parameters of earthquakes in the reservoir-triggered seismic (RTS) zone of Koyna–Warna, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 965-979, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:62:y:2012:i:3:p:937-952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.