IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v56y2011i1p59-79.html
   My bibliography  Save this article

Analysis of the Sanchung inundation during Typhoon Aere, 2004

Author

Listed:
  • Albert Chen
  • Ming-Hsi Hsu
  • Chen-Jia Huang
  • Wan-Yu Lien

Abstract

Typhoon Aere swept over Taiwan with heavy rain, which induced huge discharge in the Danshuei River in August 2004. The flood in the Danshuei River intruded Sanchung through a culvert that was under construction. The deluge inundated thousands of premises and resulted in severe damage. This study reconstructs the event scenario using hydrologic and hydraulic methods to analyse the causes of the disaster. We integrated the radar rainfall estimations and rain gauge observations to recreate the temporal and spatial varied precipitation inputs; estimated the influent volume from the culvert using hydrologic equations; and simulated the flood dynamic within the study area during the event with a coupled overland and sewer flow model. The evidence showed that both the rainfall and the culvert flow contributed similar flood volume to the study area, but culvert discharge concentrated at single location within short time period such that the local drainage system could not cope with and notable damage was incurred. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Albert Chen & Ming-Hsi Hsu & Chen-Jia Huang & Wan-Yu Lien, 2011. "Analysis of the Sanchung inundation during Typhoon Aere, 2004," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 59-79, January.
  • Handle: RePEc:spr:nathaz:v:56:y:2011:i:1:p:59-79
    DOI: 10.1007/s11069-010-9549-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9549-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9549-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Feng Chen & Chung-Ming Liu, 2014. "The definition of urban stormwater tolerance threshold and its conceptual estimation: an example from Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 173-190, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:56:y:2011:i:1:p:59-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.