IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v55y2010i2p371-387.html
   My bibliography  Save this article

Rapid terrain-based mapping of some volcaniclastic flow hazard using Gis-based automated methods: a case study from southern Campania, Italy

Author

Listed:
  • M. Bisson
  • R. Sulpizio
  • G. Zanchetta
  • F. Demi
  • R. Santacroce

Abstract

Destructive volcaniclastic flows are among the most recurrent and dangerous natural phenomena in volcanic areas. They can originate not only during or shortly after an eruption (syn-eruptive) but also during a period of volcanic quiescence (inter-eruptive), when heavy and/or persistent rains remobilize loose pyroclastic deposits. The area in Italy most prone to such flows is that of the Apennine Mountains bordering the southern Campania Plain. These steep slopes are covered by pyroclastic material of variable thickness (a few cm to several m) derived from the explosive activity of the Somma-Vesuvius and Campi Flegrei volcanoes a few tens of kilometers to the west. The largest and most recent devastating event occurred on May 5, 1998, causing the death of more than 150 people and considerable damage to villages at the foot of the Apennine Mountains. This tragic event was only the most recent of a number of volcaniclastic flows affecting the area in both historical and prehistoric times. Historical accounts report that more than 500 events have occurred in the last five centuries and that more than half of these occurred in the last 100 years, causing hundreds of deaths. In order to improve volcaniclastic flow hazard zonation and risk mitigation in the study area, we produced a zonation map that identifies the drainage basins potentially prone to disruption. This map was obtained by combining morphological characteristics (concavity and basin shape factor) and the mean slope distribution of drainage basins derived from a digital elevation model with a 10-m resolution. These parameters allowed for the classification of 1,069 drainage basins, which have been grouped into four different classes of proneness to disruption: low, moderate, high and very high. The map compiled in a GIS environment, as well as the linked database, can be rapidly queried. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • M. Bisson & R. Sulpizio & G. Zanchetta & F. Demi & R. Santacroce, 2010. "Rapid terrain-based mapping of some volcaniclastic flow hazard using Gis-based automated methods: a case study from southern Campania, Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 371-387, November.
  • Handle: RePEc:spr:nathaz:v:55:y:2010:i:2:p:371-387
    DOI: 10.1007/s11069-010-9533-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9533-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9533-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastiano Perriello Zampelli & Eliana Bellucci Sessa & Marco Cavallaro, 2012. "Application of a GIS-aided method for the assessment of volcaniclastic soil sliding susceptibility to sample areas of Campania (Southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 155-168, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:55:y:2010:i:2:p:371-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.