IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v52y2010i3p519-537.html
   My bibliography  Save this article

Dynamic routing modeling for flash flood forecast in river system

Author

Listed:
  • Wen-Cheng Liu
  • Wei-Bo Chen
  • Ming-Hsi Hsu
  • Jin-Cheng Fu

Abstract

A real-time flood-forecasting method coupled with the one-dimensional unsteady flow model was developed for the Danshuei River system in northern Taiwan. Based on the flow at current time, the flow at new time is calculated to provide the water stage forecasting during typhoons. Data, from two typhoons in 2000: Bilis and Nari, were used to validate and evaluate the model capability. First, the developed model was applied to validate and evaluate with and without discharge corrections at the Hsin-Hai Bridge in Tahan Stream, Chung-Cheng Bridge in Hsintien Stream, and Sir-Ho Bridge in the Keelung River. The results indicate that the calculated water stage profiles approach the observed data. Moreover, the water stage forecasting hydrograph with discharge correction is close to the observed water stage hydrograph and yields a better prediction than that without discharge correction. The model was then used to quantify the difference in prediction between different methods of real-time water stage correction. The model results reveal that water stages using the 1–6 h forecast with real-time stage correction exhibits the best lead times. The accuracy for 1–3 h lead time is higher than that for 4–6 h lead time, suggesting that the flash flood forecast in the river system is reasonably accurate for 1–3 h lead time only. The method developed is effective for flash flood forecasting and can be adopted for flood forecasting in complicated river systems. Copyright Springer Science+Business Media B.V. 2010

Suggested Citation

  • Wen-Cheng Liu & Wei-Bo Chen & Ming-Hsi Hsu & Jin-Cheng Fu, 2010. "Dynamic routing modeling for flash flood forecast in river system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 519-537, March.
  • Handle: RePEc:spr:nathaz:v:52:y:2010:i:3:p:519-537
    DOI: 10.1007/s11069-009-9394-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-009-9394-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-009-9394-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yusuf Kaya & Michael Stewart & Marc Becker, 2005. "Flood Forecasting and Flood Warning in the Firth of Clyde, UK," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 36(1), pages 257-271, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaozhang Hu & Lixiang Song, 2018. "Hydrodynamic modeling of flash flood in mountain watersheds based on high-performance GPU computing," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 567-586, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro D. Sabatino & Rory B. O’Hara Murray & Alan Hills & Douglas C. Speirs & Michael R. Heath, 2016. "Modelling sea level surges in the Firth of Clyde, a fjordic embayment in south-west Scotland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1601-1623, December.
    2. Tom Ball & Anton Edwards & Alan Werritty, 2014. "Coastal flooding in Scotland: towards national-level hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(2), pages 1133-1152, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:52:y:2010:i:3:p:519-537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.