IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v29y2003i3p425-436.html
   My bibliography  Save this article

Far-Field Tsunami Potential and a Real-Time Forecast System for the Pacific Using the Inversion Method

Author

Listed:
  • Nobuaki Koike
  • Yoshiaki Kawata
  • Fumihiko Imamura

Abstract

Estimating tsunami potential is anessential part of mitigating tsunami disasters. Weproposed a new method to estimate the far-fieldtsunami potential by assuming faultmodels on the Pacific Rim. We find thata tsunami that generates in the areas wherethere is no tsunami in the history can damagethe Japanese coast. This shows that it isimportant to estimate tsunami potential byassuming fault models other than the pastearthquake data. Another important activity to mitigate tsunamidisasters is to provide appropriatewarnings to coastal communities when dangerfrom a tsunami is imminent. We applied anew inversion method using wavelet transformto a part of the real-time tsunami forecastsystem for the Pacific. Because this inversionmethod does not require fault location, it ispossible to analyze a tsunami in real timewithout all seismic information. In order tocheck the usability of the system, anumerical simulation was executed assuming anearthquake at sea off Taiwan. The correlationcoefficient for the estimated initialwaveform to the assumed one was calculatedto be 0.78. It takes 90 min to capturetime-series waveform data from tsunamigauges and 5 sec to estimate the 2-D initialwaveform using the inversion method. After that,it takes 2 minutes to forecast thetsunami heights at the Japanese coast. Since thesum of these times is less than the 105minutes transit time of the tsunami fromTaiwan to Japan, it is possible to give a warningto the residents before the tsunami attacksthe Japanese coast. Comparing the tsunamiheights forecasted by this system with thosecalculated by the fault model, the averageerror was 0.39 m. The average error ofthe arrival time was 0.007 min. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Nobuaki Koike & Yoshiaki Kawata & Fumihiko Imamura, 2003. "Far-Field Tsunami Potential and a Real-Time Forecast System for the Pacific Using the Inversion Method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(3), pages 425-436, July.
  • Handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:425-436
    DOI: 10.1023/A:1024760026596
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1024760026596
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1024760026596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:29:y:2003:i:3:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.