IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i8d10.1007_s11069-025-07162-x.html
   My bibliography  Save this article

Estimation of earthquake recurrence parameters for the Himalayan seismic belt: a comprehensive analysis

Author

Listed:
  • Rajiv Kumar

    (National Center for Seismology, Ministry of Earth Sciences
    Kurukshetra University)

  • R. B. S. Yadav

    (Kurukshetra University)

  • Himanshu Mittal

    (National Center for Seismology, Ministry of Earth Sciences)

  • Atul Saini

    (National Center for Seismology, Ministry of Earth Sciences)

  • O. P. Mishra

    (National Center for Seismology, Ministry of Earth Sciences)

Abstract

In this study, we conducted a comprehensive assessment of earthquake recurrence parameters along the Himalayan seismic belt (HSB), defined by coordinates 25°-35° N and 72°-98° E. Our analysis covered the estimation of critical earthquake hazard parameters, including Gutenberg-Richter (GR) parameters ‘b’ and ‘a’ values, mean seismic activity rate (λ), maximum regional magnitude (Mmax), return periods, and probabilities of distinct earthquake magnitudes. We utilized an extensive earthquake dataset spanning the period from 825 B.C. to 2023, which was categorized by depth into three ranges: shallow (h = 0–25 km), intermediate (h = 25–70 km), and deep (h ≥ 70 km). The dataset was homogenized based on moment magnitude (MW) and declustered to remove dependent events. Using the maximum likelihood technique, we estimated hazard parameters, integrating data from both historical and instrumental periods. The seismic source zones were classified into 34, 27, and 5 zones for depth intervals h = 0–25 km, h = 25–70 km, and h ≥ 70 km, respectively, based on seismic activity, focal mechanisms, and seismotectonic features. Geographical maps were generated for these zones at different depths to visualize variations in hazard parameters. Our findings highlighted significant differences in seismic hazard levels across the HSB, reflecting the complex crustal heterogeneities and tectonic intricacies of the region. Zones 16, 18, 26, 29, and 33 in the shallow depth range exhibited Mmax values of MW ≥8.0. In the intermediate depth range, zones 19, 22, and 24 showed potential for Mmax values in the range of MW 7.0-7.7. For the deep zones, zone 5 indicated a similar potential. The return periods for MW 7.0 earthquakes varied across the source zones and in the shallow depth range, it ranged from 35 to 94 years. For the intermediate depth range, return periods were between 329 and 789 years, and for the deepest zones, it ranged from 72.8 to 1300 years. Furthermore, the assessment of probabilities (> 0.70) has been performed for different zones across all depth ranges. This study underscores pronounced spatial disparities in seismic hazard levels along the Himalayan seismic belt, highlighting the need for detailed regional seismic hazard assessments to better understand and mitigate earthquake risks in this seismically active region.

Suggested Citation

  • Rajiv Kumar & R. B. S. Yadav & Himanshu Mittal & Atul Saini & O. P. Mishra, 2025. "Estimation of earthquake recurrence parameters for the Himalayan seismic belt: a comprehensive analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9221-9259, May.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07162-x
    DOI: 10.1007/s11069-025-07162-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07162-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07162-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Yadav & J. Tripathi & D. Shanker & B. Rastogi & M. Das & Vikas Kumar, 2011. "Probabilities for the occurrences of medium to large earthquakes in northeast India and adjoining region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(1), pages 145-167, January.
    2. A. Mahajan & V. Thakur & Mukat Sharma & Mukesh Chauhan, 2010. "Probabilistic seismic hazard map of NW Himalaya and its adjoining area, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(3), pages 443-457, June.
    3. Ranjit Das & Claudio Menesis & Diego Urrutia, 2023. "Regression relationships for conversion of body wave and surface wave magnitudes toward Das magnitude scale, Mwg," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 365-380, May.
    4. Roger Bilham & Philip England, 2001. "Plateau ‘pop-up’ in the great 1897 Assam earthquake," Nature, Nature, vol. 410(6830), pages 806-809, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Mandal & P. Khan & A. Shukla, 2014. "Soil responses near Delhi ridge and adjacent regions in Greater Delhi during incidence of a local earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 93-118, January.
    2. P. Anbazhagan & Ketan Bajaj & Satyajit Patel, 2015. "Seismic hazard maps and spectrum for Patna considering region-specific seismotectonic parameters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(2), pages 1163-1195, September.
    3. A. Vanuvamalai & K. P. Jaya & V. Balachandran, 2018. "Seismic performance of tunnel structures: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 453-468, August.
    4. Minakshi Mishra & Abhishek & R. B. S. Yadav & Manisha Sandhu, 2021. "Probabilistic assessment of earthquake hazard in the Andaman–Nicobar–Sumatra region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 313-338, January.
    5. Abhishek Kumar & P. Anbazhagan & T. Sitharam, 2013. "Seismic hazard analysis of Lucknow considering local and active seismic gaps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 327-350, October.
    6. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    7. Ramees R. Mir & Imtiyaz A. Parvez, 2020. "Ground motion modelling in northwestern Himalaya using stochastic finite-fault method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1989-2007, September.
    8. Hemchandra Chaulagain & Hugo Rodrigues & Vitor Silva & Enrico Spacone & Humberto Varum, 2015. "Seismic risk assessment and hazard mapping in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 583-602, August.
    9. B. V. Lakshmi & Md. Mujahed Baba & Pravin B. Gawali, 2023. "Investigation of past earthquakes in the Kopili fault zone, NE India: new evidence of paleoliquefaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(3), pages 2113-2131, December.
    10. Madan Mohan Rout & Josodhir Das & Kamal, 2018. "Probabilistic seismic hazard for Himalayan region using kernel estimation method (zone-free method)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 967-985, September.
    11. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    12. Chhavi Choudhary & Mukat Lal Sharma, 2018. "Global strain rates in western to central Himalayas and their implications in seismic hazard assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1211-1224, December.
    13. Singh Mridula & Amita Sinvhal & Hans Raj Wason & Swati Singh Rajput, 2016. "Segmentation of Main Boundary Thrust and Main Central Thrust in Western Himalaya for assessment of seismic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 383-403, October.
    14. Brijesh K. Bansal & Mithila Verma & Arun K. Gupta & R. Arun Prasath, 2022. "On mitigation of earthquake and landslide hazards in the eastern Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1079-1102, November.
    15. Vickey Sharma & Rajib Biswas, 2024. "Statistical analysis of seismic b-value using non-parametric Kolmogorov–Smirnov test and probabilistic seismic hazard parametrization for Nepal and its surrounding regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7499-7526, June.
    16. G. Joshi & M. Sharma, 2011. "Strong ground-motion prediction and uncertainties estimation for Delhi, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(2), pages 617-637, November.
    17. Babita Sharma & Sumer Chopra & Vikas Kumar, 2016. "Simulation of strong ground motion for 1905 Kangra earthquake and a possible megathrust earthquake (Mw 8.5) in western Himalaya (India) using Empirical Green’s Function technique," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 487-503, January.
    18. Pankaj Bhardwaj & Omvir Singh & R. B. S. Yadav, 2020. "Probabilistic assessment of tropical cyclones’ extreme wind speed in the Bay of Bengal: implications for future cyclonic hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 275-295, March.
    19. Asim Bashir & Dhiman Basu, 2018. "Revisiting probabilistic seismic hazard analysis of Gujarat: an assessment of Indian design spectra," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1127-1164, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07162-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.