Author
Abstract
Floods are the most common and threatening natural risk for many countries in the world. Flood risk mapping is therefore of great importance for managing socio-economic and environmental impacts. Several researchers have proposed low-complexity and cost-effective flood mapping solutions that are useful for data scarce environments or at large-scale. Among these approaches, a line of recent research focuses on hydrogeomorphic methods that, due to digital elevation models (DEMs), exploit the causality between past flood events and the hydraulic geometry of floodplains. This study aims to compare the use of freely-available DEMs to support an advanced hydrogeomorphic method, Geomorphic Flood Index (GFI), to map flood-prone areas of the Basento River basin (Italy). The five selected DEMs are obtained from different sources, are characterized by different resolutions, spatial coverage, acquisition process, processing and validation, etc., and include: (i) HydroSHEDS v.1.1 (resolution 3 arc-seconds), hydrologically conditioned, derived primarily from STRM (NASA) and characterized by global coverage; (ii) ASTER GDEM v.3 with a res. of around 30 m (source: METI and NASA) and global coverage; (iii) EU-DEM v. 1.1 (res. 1 arc-second), Pan-European and combining SRTM and ASTER GDEM, customized to obtain a consistency with the EU-Hydro and screened to remove artefacts (source: Copernicus Land Monitoring Service); (iv) TinItaly DEM v. 1.1, (res. 10 m-cell size grid) and produced and distributed by INGV with coverage of the entire Italian territory; (v) Laser Scanner DEM with high resolution (5 m cell size grid) produced on the basis of Ground e Model Keypoint and available as part of the RSDI geoportal of the Basilicata Region with coverage at the regional administrative level. The effects of DEMs on the performance of the GFI calibration on the main reach of the Basento River, and its validation on one of its mountain tributaries (Gallitello Creek), were evaluated with widely accepted statistical metrics, i.e., the Area Under the Receiver Operating Characteristics (ROC) curve (AUC), Accuracy, Sensitivity and Specificity. Results confirmed the merits of the GFI in flood mapping using simple watershed characteristics and showed high Accuracy (AUC reached a value over 0.9 in all simulations) and low dependency on changes in the adopted DEMs and standard flood maps (1D and 2D hydraulic models or three return periods). The EU-DEM was identified as the most suitable data source for supporting GFI mapping with an AUC > 0.97 in the calibration phase for the main river reach. This may be due in part to its appropriate resolution for hydrological application but was also due to its customized pre-processing that supported an optimal description of the river network morphology. Indeed, EU-DEM obtained the highest performances (e.g., Accuracy around 98%) even in the validation phase where better results were expected from the high-resolution DEM (due to the very small size of Gallitello Creek cross-sections). For other DEMs, GFI generally showed an increase in metrics performance when, in the calibration phase, it neglected the floodplains of the river delta, where the standard flood map is produced using a 2D hydraulic model. However, if the DEMs were hydrologically conditioned with a relatively simple algorithm that forced the stream flow in the main river network, the GFI could be applied to the whole Basento watershed, including the delta, with a similar performance.
Suggested Citation
Raffaele Albano & Jan Adamowski, 2025.
"Use of digital elevation models for flood susceptibility assessment via a hydrogeomorphic approach: A case study of the Basento River in Italy,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9021-9042, May.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07144-z
DOI: 10.1007/s11069-025-07144-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:8:d:10.1007_s11069-025-07144-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.