IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i2d10.1007_s11069-024-06905-6.html
   My bibliography  Save this article

A comparative study on rockfall block motion characteristics using 3-D and 2-D rockfall simulations: a case study from Cappadocia (Mazı, Türkiye)

Author

Listed:
  • Mutluhan Akin

    (Nevşehir Hacı Bektaş Veli University)

  • İsmail Dinçer

    (Nevşehir Hacı Bektaş Veli University)

  • Ahmet Orhan

    (Nevşehir Hacı Bektaş Veli University)

  • Ogün Ozan Varol

    (Van Yüzüncü Yıl University)

Abstract

Within the scope of this research, rockfalls in Mazı village of Ürgüp (Türkiye) district were simulated on a digital surface model constructed using high resolution (2.9 cm) point cloud data retrieved from a real orthophoto mosaic gathered by an unmanned aerial vehicle in order to compare the results of 2-D and 3-D rockfall models. At the initial stage, 3-dimensional rockfall analyses were carried out using RocPro3D software and block dynamics such as trajectory, maximum runout distance, bounce height and total kinetic energy of the blocks were determined. Subsequently, a total of eight slope profiles were obtained from the point cloud data and 2-dimensional rockfall analyses were executed by means of RocFall 2-D software. Using a rockfall point source indicating the starting position of 2-D rockfall analysis, the rockfall analyses were repeated on 3-dimensional digital surface model and the block motion characteristics obtained from 2-D and 3-D analyses were compared. Eventually, it is revealed that block runout distances may differ in 3-D and 2-D rockfall analyses. Additionally, 3-D analyses reveal a significant advantage over 2-D analyses in terms of including topographic roughness, curves and obstacles in the model. On the other hand, one of the most significant variances between 2-D and 3-D rockfall analyses retrieved in this research is in the bounce height values. While the bounce height value in 2-D models may attain a maximum of 7 m, 3-D simulations point out that the detached blocks mostly roll over the slope with very low bouncing. When the simulation results are evaluated in terms of total kinetic energy, it is concluded that kinetic energy values are commonly higher in 2-D rockfall analyses than those of 3-D simulations. Conversely, block translational velocity values are typically comparable in both 2-D and 3-D rockfall models. Besides, considering the trajectories obtained via 3-D rockfall models for the study site, it is obvious that the settlement is under the risk of rockfall to a significant extent. Rockfall simulations highlight that the total kinetic energy values of the blocks are also quite high, which increase the destructive effect of rockfalls.

Suggested Citation

  • Mutluhan Akin & İsmail Dinçer & Ahmet Orhan & Ogün Ozan Varol, 2025. "A comparative study on rockfall block motion characteristics using 3-D and 2-D rockfall simulations: a case study from Cappadocia (Mazı, Türkiye)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 2265-2291, January.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06905-6
    DOI: 10.1007/s11069-024-06905-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06905-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06905-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shao-Zhen Duan & Guang-Li Li & Xin Yang & Xin-Rong Wei, 2024. "Predicting the velocity and trajectory of a rockfall after collision considering the effects of slope properties," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 2057-2072, January.
    2. Carlo Robiati & Giandomenico Mastrantoni & Mirko Francioni & Matthew Eyre & John Coggan & Paolo Mazzanti, 2023. "Contribution of High-Resolution Virtual Outcrop Models for the Definition of Rockfall Activity and Associated Hazard Modelling," Land, MDPI, vol. 12(1), pages 1-20, January.
    3. Marcos Eduardo Hartwig & Lázaro Valentin Zuquette, 2022. "Rockfall danger and risk analysis around a granite inselberg in the Vila Velha city (southeastern Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3309-3326, December.
    4. B. Palma & M. Parise & P. Reichenbach & F. Guzzetti, 2012. "Rockfall hazard assessment along a road in the Sorrento Peninsula, Campania, southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 187-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. N. Singh & Rajbal Singh & Bhoop Singh & L. K. Sharma & Rajesh Singh & M. K. Ansari, 2016. "Investigations and stability analyses of Malin village landslide of Pune district, Maharashtra, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 2019-2030, April.
    2. Peng Yang & Yanjun Shang & Yanyan Li & Huilun Wang & Kun Li, 2017. "Analysis of Potential Rockfalls on a Highway at High Slopes in Cold-Arid Areas (Northwest Xinjiang, China)," Sustainability, MDPI, vol. 9(3), pages 1-17, March.
    3. Youssef El Miloudi & Younes El Kharim & Ali Bounab & Rachid El Hamdouni, 2024. "Effect of Rockfall Spatial Representation on the Accuracy and Reliability of Susceptibility Models (The Case of the Haouz Dorsale Calcaire, Morocco)," Land, MDPI, vol. 13(2), pages 1-16, February.
    4. P. Singh & A. Wasnik & Ashutosh Kainthola & M. Sazid & T. Singh, 2013. "The stability of road cut cliff face along SH-121: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 497-507, September.
    5. Lukovic Marija & Ziegler Martin & Aaron Jordan & Perras Matthew, 2022. "Rockfall susceptibility and runout in the Valley of the Kings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 451-485, January.
    6. V. Vishal & T. Siddique & Rohan Purohit & Mohit K. Phophliya & S. P. Pradhan, 2017. "Hazard assessment in rockfall-prone Himalayan slopes along National Highway-58, India: rating and simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 487-503, January.
    7. Hao Pu & Jia Xie & Paul Schonfeld & Taoran Song & Wei Li & Jie Wang & Jianping Hu, 2021. "Railway Alignment Optimization in Mountainous Regions Considering Spatial Geological Hazards: A Sustainable Safety Perspective," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:2:d:10.1007_s11069-024-06905-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.