IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i13d10.1007_s11069-025-07401-1.html
   My bibliography  Save this article

Evaluating flood and landslide hazards to cultural heritage sites in Historic Cairo

Author

Listed:
  • Abdalla M. Allam

    (Egypt-Japan University of Science and Technology, E-JUST
    Mansoura University)

  • Mona G. Ibrahim

    (Egypt-Japan University of Science and Technology, E-JUST
    High Institute of Public Health, Alexandria University)

  • Shinjiro Kanae

    (Institute of Science Tokyo)

  • Mahmoud Sharaan

    (Egypt-Japan University of Science and Technology, E-JUST
    Suez Canal University)

Abstract

Historic Cairo is particularly considered a UNESCO World Heritage site that is very vulnerable to natural disasters, such as flooding and landslides, which would threaten its cultural heritage. Multi-risk vulnerability assessments of heritage sites were investigated using remote sensing and GIS methods. Key factors were prioritized using the Analytic Hierarchy Process, and hazard maps were generated to identify areas at risk of floods and/or landslides. The investigation revealed that 54.1% of the study area falls within very low to moderate flood hazard zones, while 12.4% is classified as very high hazard, affecting 21 heritage sites. Additionally, 16% of the study area is in high-threat zones for landslides, impacting 13 cultural sites, with none in very high-risk zones. Considering both hazards, at least 30 sites are in high-risk areas, including 9 in very high-risk zones. The results highlight the urgent need to develop and implement targeted risk mitigation strategies, particularly for sites in central and eastern Historic Cairo, where flood and landslide risks overlap. The GIS-based database and hazard maps provide valuable tools for urban planners, policymakers, and stakeholders to formulate effective protection strategies for Historic Cairo’s cultural heritage.

Suggested Citation

  • Abdalla M. Allam & Mona G. Ibrahim & Shinjiro Kanae & Mahmoud Sharaan, 2025. "Evaluating flood and landslide hazards to cultural heritage sites in Historic Cairo," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(13), pages 15491-15535, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07401-1
    DOI: 10.1007/s11069-025-07401-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07401-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07401-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Rabbya ul Qalab & M. Sultan Bhat & Akhtar Alam & Mussadiq Hussain Qureshi & Mohd Saleem Wani & Nahida Yousuf, 2025. "Flood susceptibility mapping using geospatial techniques: a study of the Kashmir Basin in the Northwest Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(8), pages 9067-9101, May.
    2. Chinh Luu & Jason Meding & Sittimont Kanjanabootra, 2018. "Assessing flood hazard using flood marks and analytic hierarchy process approach: a case study for the 2013 flood event in Quang Nam, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1031-1050, February.
    3. Wael Attia & Dina Ragab & Atef M. Abdel-Hamid & Aly M. Marghani & Abdelaziz Elfadaly & Rosa Lasaponara, 2022. "On the Use of Radar and Optical Satellite Imagery for the Monitoring of Flood Hazards on Heritage Sites in Southern Sinai, Egypt," Sustainability, MDPI, vol. 14(9), pages 1-15, May.
    4. Mohamed M. Abdelkader & Árpád Csámer, 2025. "Comparative assessment of machine learning models for landslide susceptibility mapping: a focus on validation and accuracy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(9), pages 10299-10321, May.
    5. Martin Kabenge & Joshua Elaru & Hongtao Wang & Fengting Li, 2017. "Characterizing flood hazard risk in data-scarce areas, using a remote sensing and GIS-based flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1369-1387, December.
    6. M. M. Yagoub & Aishah A. Alsereidi & Elfadil A. Mohamed & Punitha Periyasamy & Reem Alameri & Salama Aldarmaki & Yaqein Alhashmi, 2020. "Newspapers as a validation proxy for GIS modeling in Fujairah, United Arab Emirates: identifying flood-prone areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 111-141, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed M. Youssef & Ali M. Mahdi & Hamid Reza Pourghasemi, 2023. "Optimal flood susceptibility model based on performance comparisons of LR, EGB, and RF algorithms," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1071-1096, January.
    2. Vahid Gholami, 2022. "Prediction of flood discharge and flood flow depth using a hydraulic model and flood marks on the trees in ungauged forested watersheds," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(5), pages 190-198.
    3. Mohammed Sarfaraz Gani Adnan & Ashraf Dewan & Khatun E. Zannat & Abu Yousuf Md Abdullah, 2019. "The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 425-448, October.
    4. Shupan Deng & Zhichao Wang & Longhua Wu & Ting Wu & Yang Xia & Yue Liu, 2025. "Research on Joint Operation of Flood Diversion and Storage Measures: A Case Study of Poyang Lake," Sustainability, MDPI, vol. 17(4), pages 1-24, February.
    5. Alaa Ahmed & Guna Hewa & Abdullah Alrajhi, 2021. "Flood susceptibility mapping using a geomorphometric approach in South Australian basins," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 629-653, March.
    6. Mateusz Hämmerling & Joanna Kocięcka & Stanisław Zaborowski, 2021. "AHP as a Useful Tool in the Assessment of the Technical Condition of Hydrotechnical Constructions," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    7. Zixin Xie & Bo Shu, 2025. "Risk Assessment and Spatial Zoning of Rainstorm and Flood Hazards in Mountainous Cities Using the Random Forest Algorithm and the SCS Model," Land, MDPI, vol. 14(3), pages 1-25, February.
    8. Preeti Ramkar & Sanjaykumar M. Yadav, 2021. "Flood risk index in data-scarce river basins using the AHP and GIS approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 1119-1140, October.
    9. Kieu Anh Nguyen & Chiao-Shin Huang & Walter Chen, 2025. "Machine Learning-Based Land Cover Mapping of Nanfeng Village with Emphasis on Landslide Detection," Sustainability, MDPI, vol. 17(18), pages 1-20, September.
    10. Chinh Luu & Hieu Xuan Tran & Binh Thai Pham & Nadhir Al-Ansari & Thai Quoc Tran & Nga Quynh Duong & Nam Hai Dao & Lam Phuong Nguyen & Huu Duy Nguyen & Huong Thu Ta & Hiep Van Le & Jason von Meding, 2020. "Framework of Spatial Flood Risk Assessment for a Case Study in Quang Binh Province, Vietnam," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    11. Chengwei Lu & Jianzhong Zhou & Zhongzheng He & Shuai Yuan, 2018. "Evaluating typical flood risks in Yangtze River Economic Belt: application of a flood risk mapping framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1187-1210, December.
    12. Chinh Luu & Quynh Duy Bui & Romulus Costache & Luan Thanh Nguyen & Thu Thuy Nguyen & Tran Phong & Hiep Le & Binh Thai Pham, 2021. "Flood-prone area mapping using machine learning techniques: a case study of Quang Binh province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3229-3251, September.
    13. Rameswar Mukherjee & Pamela Deb, 2024. "Application of GIS-based analytical hierarchy process for assessment and mapping of flood risk zone in the lower Ramganga River Basin, Western Gangetic Plain, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 6163-6193, March.
    14. Nguyen Hong Quang & Minh Nguyen Nguyen & Nguyen Manh Hung & Hanna Lee & Gihong Kim, 2025. "AI-based flood mapping from high-resolution ASNARO-2 images: case study of a severe event in the Center of Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(15), pages 17647-17675, August.
    15. Ana Momčilović Petronijević & Predrag Petronijević, 2022. "Floods and Their Impact on Cultural Heritage—A Case Study of Southern and Eastern Serbia," Sustainability, MDPI, vol. 14(22), pages 1-25, November.
    16. Hang Ha & Quynh Duy Bui & Huy Dinh Nguyen & Binh Thai Pham & Trinh Dinh Lai & Chinh Luu, 2023. "A practical approach to flood hazard, vulnerability, and risk assessing and mapping for Quang Binh province, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1101-1130, February.
    17. Saumya Arya & Arun Kumar, 2023. "AHP GIS-aided flood hazard mapping and surface runoff estimation in Gurugram, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2963-2987, July.
    18. Bosco Bwambale & Martine Nyeko & John Sekajugo & Matthieu Kervyn, 2022. "The essential contribution of indigenous knowledge to understanding natural hazards and disaster risk: historical evidence from the Rwenzori (Uganda)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1847-1867, February.
    19. Reza Esmaili & Seyedeh Atefeh Karipour, 2024. "Comparison of weighting methods of multicriteria decision analysis (MCDA) in evaluation of flood hazard index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(9), pages 8619-8638, July.
    20. Alaa Ahmed & Abdullah Alrajhi & Abdulaziz Alquwaizany & Ali Al Maliki & Guna Hewa, 2022. "Flood Susceptibility Mapping Using Watershed Geomorphic Data in the Onkaparinga Basin, South Australia," Sustainability, MDPI, vol. 14(23), pages 1-23, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07401-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.