Author
Listed:
- Muhammad Zeeshaan Shahid
(University of the Punjab)
- Muhammad Imran Shahzad
(COMSATS University Islamabad)
- Sundas Jaweria
(COMSATS University Islamabad)
- Sadaf Javed
(COMSATS University Islamabad)
- Shah Zaib
(Shihezi University)
- Imran Shahid
(Qatar University)
Abstract
The northeastern region of Pakistan (NEP) has experienced increased haze episodes over the past decade, primarily due to enhanced biomass burning activities during the post-monsoon season. Economic growth, urbanization and industrial development also controbuted to high pollutants levels that leads to decline in air quality and visibility. These elevated pollution levels over NEP (69–75.5°E, 27.4–34°N) are influenced by both meteorological conditions and anthropogenic activities. This study investigates aerosol concentrations before, during, and after the haze episode during November 2021 using model simulations and remote sensing data. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), along with satellite observations from the Moderate Resolution Imaging Spectroradiometer (MODIS), are used for validation and analysis of this haze episode. The results illustrate the key contributors to this haze event and showed the there is significant increases in aerosol components such as sulfate, black carbon, organic carbon, dust and aerosol optical depth (AOD). The planetary boundary layer (PBL) height, measured with Ceilometer LIDAR, showed decreasing trend in height from October to December that support aerosol accumulation near the surface during the the month of November. This month is also biomass burning, crop residue burning, season in the region. These haze episodes also impacts the atmospheric visibility that dropped below 2 km in November. These findings provide key insights into the complex interactions between meteorology, emissions, and haze formation in NEP region, and will provide policy makers to design effective mittigation strategies.
Suggested Citation
Muhammad Zeeshaan Shahid & Muhammad Imran Shahzad & Sundas Jaweria & Sadaf Javed & Shah Zaib & Imran Shahid, 2025.
"Characteristics of aerosols and planetary boundary layer dynamics during biomass burning season,"
Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(11), pages 12531-12549, June.
Handle:
RePEc:spr:nathaz:v:121:y:2025:i:11:d:10.1007_s11069-025-07295-z
DOI: 10.1007/s11069-025-07295-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:11:d:10.1007_s11069-025-07295-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.