An integrated framework for wildfire emergency response and post-fire debris flow prediction: a case study from the wildfire event on 20 April 2021 in Mianning, Sichuan, China
Author
Abstract
Suggested Citation
DOI: 10.1007/s11069-025-07270-8
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
- Michalis Diakakis & Spyridon Mavroulis & Emmanuel Vassilakis & Vassiliki Chalvatzi, 2023. "Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation," Land, MDPI, vol. 12(3), pages 1-18, February.
- Yu Chang & Zhiliang Zhu & Yuting Feng & Yuehui Li & Rencang Bu & Yuanman Hu, 2016. "The spatial variation in forest burn severity in Heilongjiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 981-1001, March.
- J. Gartner & P. Santi & S. Cannon, 2015. "Predicting locations of post-fire debris-flow erosion in the San Gabriel Mountains of southern California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1305-1321, June.
- Yu Chang & Zhiliang Zhu & Yuting Feng & Yuehui Li & Rencang Bu & Yuanman Hu, 2016. "The spatial variation in forest burn severity in Heilongjiang Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 981-1001, March.
- Hong Wen Yu & S. Y. Simon Wang & Wan Yu Liu, 2024. "Estimating wildfire potential in Taiwan under different climate change scenarios," Climatic Change, Springer, vol. 177(1), pages 1-26, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zheng, Zhong & Huang, Wei & Li, Songnian & Zeng, Yongnian, 2017. "Forest fire spread simulating model using cellular automaton with extreme learning machine," Ecological Modelling, Elsevier, vol. 348(C), pages 33-43.
- Xu Jia & Yong Gao & Baocheng Wei & Shan Wang & Guodong Tang & Zhonghua Zhao, 2019. "Risk Assessment and Regionalization of Fire Disaster Based on Analytic Hierarchy Process and MODIS Data: A Case Study of Inner Mongolia, China," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
- Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
- Michael Nones & Hossein Hamidifar & Seyed Mohammad Bagher Shahabi-Haghighi, 2024. "Exploring EM-DAT for depicting spatiotemporal trends of drought and wildfires and their connections with anthropogenic pressure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 957-973, January.
- Nicolas Boccard, 2022. "On the prevalence of forest fires in Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1043-1057, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:10:d:10.1007_s11069-025-07270-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i10d10.1007_s11069-025-07270-8.html