IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i6d10.1007_s11069-024-06426-2.html
   My bibliography  Save this article

Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria

Author

Listed:
  • Alexander Radulov

    (Bulgarian Academy of Sciences)

  • Thomas K. Rockwell

    (San Diego State University
    Czech Academy of Sciences)

  • Marlena Yaneva

    (Bulgarian Academy of Sciences)

  • Yordanka Donkova

    (Bulgarian Academy of Sciences)

  • Hristo Kiselinov

    (Bulgarian Academy of Sciences)

  • Nikolay Nikolov

    (Bulgarian Academy of Sciences)

Abstract

The 2012 M5.6 Pernik earthquake in Bulgaria proceeded at slow slip rates and was accompanied with ground failure along the Meshtitsa fault scarp. Our investigation through paleoseismological trenching techniques and electrical resistivity tomography discovered a broad zone with multiple fault cores. In a trench, a 40-m-thick montmorillonite clay stratum is embedded in coarse-grained alluvial deposits along with two narrow gouge zones; together they demonstrate a frictional heterogeneity within the fault zone. The clayey deposits had experienced frictional stability which is recorded in intersecting shear bands interpreted to have formed at slow strain rates. A steep bedding of Oligocene alluvial deposits is interpreted as a result from an earlier phase of strike-slip motion. Since transitioning to normal dip-slip motion in the late Miocene, two gouge zones located at the periphery of the clayey deposits suggest strain localization during surface-rupturing earthquakes. In alluvial sediments deposited 3300 cal BP, localized slip on one of the faults and dispersed tensile cracks in the hangingwall of the other fault likely express failures at different strain rates. We infer that it is likely that the dispersed cracks in the trench, and similarly some of the 2012 ground cracks, resulted from afterslip, which followed ruptures at depth on relatively small seismically coupled fault areas. In contrast, we interpret the slip localized in the fault cores to have occurred when most of fault area was seismically coupled in larger earthquakes. This fault expresses a variability in earthquake sizes and seismic coupling in the past 3300 cal BP.

Suggested Citation

  • Alexander Radulov & Thomas K. Rockwell & Marlena Yaneva & Yordanka Donkova & Hristo Kiselinov & Nikolay Nikolov, 2024. "Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(6), pages 5309-5331, April.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06426-2
    DOI: 10.1007/s11069-024-06426-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06426-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06426-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Billi & Fabio Corbi & Marco Cuffaro & Barbara Orecchio & Mimmo Palano & Debora Presti & Cristina Totaro, 2024. "Seismic slip channeling along the East Anatolian Fault illuminates long-term supercycle behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Laura Laurenti & Gabriele Paoletti & Elisa Tinti & Fabio Galasso & Cristiano Collettini & Chris Marone, 2024. "Probing the evolution of fault properties during the seismic cycle with deep learning," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:6:d:10.1007_s11069-024-06426-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.