IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i5d10.1007_s11069-023-06394-z.html
   My bibliography  Save this article

Host-to-target region testing of machine learning models for seismic damage prediction in buildings

Author

Listed:
  • Subash Ghimire

    (ISTerre, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, Université Gustave Eiffel)

  • Philippe Guéguen

    (ISTerre, Université Grenoble Alpes, Université Savoie Mont-Blanc, CNRS, IRD, Université Gustave Eiffel)

Abstract

Assessing or predicting seismic damage in buildings is an essential and challenging component of seismic risk studies. Machine learning methods offer new perspectives for damage characterization, taking advantage of available data on the characteristics of built environments. In this study, we aim (1) to characterize seismic damage using a classification model trained and tested on damage survey data from earthquakes in Nepal, Haiti, Serbia and Italy and (2) to test how well a model trained on a given region (host) can predict damage in another region (target). The strategy adopted considers only simple data characterizing the building (number of stories and building age), seismic ground motion (macroseismic intensity) and a traffic-light-based damage classification model (green, yellow, red categories). The study confirms that the extreme gradient boosting classification model (XGBC) with oversampling predicts damage with 60% accuracy. However, the quality of the survey is a key issue for model performance. Furthermore, the host-to-target test suggests that the model’s applicability may be limited to regions with similar contextual environments (e.g., socio-economic conditions). Our results show that a model from one region can only be applied to another region under certain conditions. We expect our model to serve as a starting point for further analysis in host-to-target region adjustment and confirm the need for additional post-earthquake surveys in other regions with different tectonic, urban fabric and socio-economic contexts.

Suggested Citation

  • Subash Ghimire & Philippe Guéguen, 2024. "Host-to-target region testing of machine learning models for seismic damage prediction in buildings," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(5), pages 4563-4579, March.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06394-z
    DOI: 10.1007/s11069-023-06394-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06394-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06394-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ismaël Riedel & Philippe Guéguen & Mauro Dalla Mura & Erwan Pathier & Thomas Leduc & Jocelyn Chanussot, 2015. "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1111-1141, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    2. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    3. Jihye Han & Jinsoo Kim & Soyoung Park & Sanghun Son & Minji Ryu, 2020. "Seismic Vulnerability Assessment and Mapping of Gyeongju, South Korea Using Frequency Ratio, Decision Tree, and Random Forest," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    4. Ismaël Riedel & Philippe Guéguen, 2018. "Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: application to France," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(2), pages 639-662, January.
    5. Jian Ma & Anirudh Rao & Vitor Silva & Kai Liu & Ming Wang, 2021. "A township-level exposure model of residential buildings for mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 389-423, August.
    6. Hanxu Zhou & Ailan Che & Xianghua Shuai & Yanbo Cao, 2024. "Seismic vulnerability assessment model of civil structure using machine learning algorithms: a case study of the 2014 Ms6.5 Ludian earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(7), pages 6481-6508, May.
    7. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    8. L. Gerardo F. Salazar & Tiago Miguel Ferreira, 2020. "Seismic Vulnerability Assessment of Historic Constructions in the Downtown of Mexico City," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    9. Manhao Luo & Shuangyun Peng & Yanbo Cao & Jing Liu & Bangmei Huang, 2023. "Earthquake fatality prediction based on hybrid feature importance assessment: a case study in Yunnan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3353-3376, April.
    10. Liqiang An & Jingfa Zhang, 2022. "Impact of Urbanization on Seismic Risk: A Study Based on Remote Sensing Data," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    11. Vera Wendler-Bosco & Charles Nicholson, 2022. "Modeling the economic impact of incoming tropical cyclones using machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 487-518, January.
    12. Zemin Gao & Mingtao Ding, 2022. "Application of convolutional neural network fused with machine learning modeling framework for geospatial comparative analysis of landslide susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 833-858, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:5:d:10.1007_s11069-023-06394-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.