IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i1d10.1007_s11069-023-06222-4.html
   My bibliography  Save this article

A large landslide on the upper reach of the Jinsha River, SE Tibetan Plateau: characteristics, influencing factors, and mechanism

Author

Listed:
  • Zhuo Chen

    (Sichuan Agricultural University
    Sichuan Agricultural University)

  • Danqing Song

    (South China University of Technology
    South China University of Technology)

Abstract

On October 11 and November 3, 2018, two large landslides occurred at the same location in Baige Village, eastern Tibet, China. These landslides pose a serious threat to both upstream and downstream areas, raising great concerns in China and worldwide. Currently, the influencing factors and fundamental mechanism of the Baige landslide are questioned, and further research is needed. Multiple methods, including comprehensive field investigation, satellite remote sensing, unmanned aerial vehicle (UAV) 3D imaging, and geographical information systems, are used to analyze the main characteristics, influencing factors, and fundamental mechanism of the Baige landslide. The results reveal that the occurrence of the Baige landslide is closely related to deep-seated gravitational slope deformations (DSGSDs); tectonic activity, river incision, earthquakes, and rainfall are also responsible for the formation of the event. From a long-term perspective, DSGSDs, active tectonic deformation, repetitive seismic activities, rapid river incision, and sustained rainfall infiltration all interact with each other and finally trigger catastrophic landslides. The damage deformation process of the Baige landslide can be divided into three stages: epigenetic deformation, time-dependent deformation, and failure. Some unstable rock masses still exist in the source area, and thus, successive deformation monitoring and timely mitigation measures should be implemented to reduce the residual risks. The research in this paper is meaningful for further research on such large-scale landslides along the Jinsha River.

Suggested Citation

  • Zhuo Chen & Danqing Song, 2024. "A large landslide on the upper reach of the Jinsha River, SE Tibetan Plateau: characteristics, influencing factors, and mechanism," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(1), pages 153-179, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06222-4
    DOI: 10.1007/s11069-023-06222-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06222-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06222-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:1:d:10.1007_s11069-023-06222-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.