IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i1d10.1007_s11069-022-05669-1.html
   My bibliography  Save this article

Numerical analysis of debris flow erosion in the mountainous areas affected by the 2008 Wenchuan earthquake using a depth-averaged two-phase model

Author

Listed:
  • Hualin Cheng

    (Tongji University)

  • Martin Mergili

    (University of Graz)

  • Yu Huang

    (Tongji University
    Tongji University)

Abstract

Channel bed erosion accompanying debris flows can significantly magnify the flowing mass and increase the associated risk. However, the mechanics of this geological phenomenon is extremely complex, which greatly increases the difficulty of predicting the dynamical behavior and bulking process of large-scale debris flows. This study employs the depth-averaged two-phase r.avaflow model to numerically analyze the flow propagation and sediment erosion processes. Two modified empirical erosion laws are further embedded in the r.avaflow framework to comparatively compute the channel erosion of a typical catastrophic debris flow occurring in Wenchuan earthquake-affected mountainous areas. The results show that both of the two erosion models can effectively reproduce the movement and channel erosion of the debris flows under investigation. In addition, the most serious sediment erosion has been found to occur along the two sides of the channels. Additionally, r.avaflow model with its simple CE-controlled erosion law relating the erosion coefficient to the slope topography is further applied to predict the dynamical behavior and bulking process of the Hongchun gully debris flow under 50- and 100-year recurrence intervals. The discharge and hazard intensity are shown to greatly increase under the effect of the typically ignored sediment erosion. This study provides more scientific basis for risk assessment and hazard mitigation for large-scale debris flows in mountainous areas.

Suggested Citation

  • Hualin Cheng & Martin Mergili & Yu Huang, 2023. "Numerical analysis of debris flow erosion in the mountainous areas affected by the 2008 Wenchuan earthquake using a depth-averaged two-phase model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 193-212, March.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05669-1
    DOI: 10.1007/s11069-022-05669-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05669-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05669-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:1:d:10.1007_s11069-022-05669-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.