IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v108y2021i3d10.1007_s11069-021-04803-9.html
   My bibliography  Save this article

New insights into the delayed initiation of a debris flow in southwest China

Author

Listed:
  • Taixin Peng

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences (UCAS))

  • Ningsheng Chen

    (Chinese Academy of Sciences (CAS)
    Academy of Plateau Science and Sustainability)

  • Guisheng Hu

    (Chinese Academy of Sciences (CAS)
    Academy of Plateau Science and Sustainability)

  • Shufeng Tian

    (Chinese Academy of Sciences (CAS)
    University of Chinese Academy of Sciences (UCAS))

  • Zheng Han

    (Central South University)

  • Enlong Liu

    (Sichuan University)

Abstract

On 6 July 2020, 3 h 40 min after rainfall stopped, a delayed debris-flow disaster occurred due to colluvium deposits in a hollow region (CDH) in the Chenghuangmiao Gully, Sichuan Province, China, resulting in 4 deaths and 27 injuries. This study explores the initiation process of the delayed debris flow and the cause for the delay. Field investigations, catchment geometry interpretation, laboratory tests, theoretical calculations, and fluid–solid coupling numerical simulation were performed to obtain landslide parameters and understand the mechanisms of the event. Results show that (1) the event was a giant low-frequency viscous debris flow. (2) It was initiated by the delayed landslide process under the influence of back-end confluence. (3) The debris-flow discharge in the main gully increased over 19.5 min. (4) The seepage process inside the CDH continued for 3 h 20 min after the rainfall stopped before the pore pressure and reduction in strength were sufficient to initiate the debris flow. This research provides new insights on delayed debris-flow disasters and can be a reference for improving disaster management systems, especially monitoring and early warning systems, thereby avoiding future casualties.

Suggested Citation

  • Taixin Peng & Ningsheng Chen & Guisheng Hu & Shufeng Tian & Zheng Han & Enlong Liu, 2021. "New insights into the delayed initiation of a debris flow in southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2855-2877, September.
  • Handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04803-9
    DOI: 10.1007/s11069-021-04803-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04803-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04803-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhanyu Zhang & Liting Sheng & Jie Yang & Xiao-An Chen & Lili Kong & Bakhtawar Wagan, 2015. "Effects of Land Use and Slope Gradient on Soil Erosion in a Red Soil Hilly Watershed of Southern China," Sustainability, MDPI, vol. 7(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Shunyu & Nazir Ahmed Bazai & Tang Jinbo & Jiang Hu & Yi Shujian & Zou Qiang & Tashfain Ahmed & Guo Jian, 2022. "Dynamic process of a typical slope debris flow: a case study of the wujia gully, Zengda, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 565-586, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benhui Zhu & Shizuka Hashimoto, 2021. "Is Expansion or Regulation more Critical for Existing Protected Areas? A Case Study on China’s Eco-Redline Policy in Chongqing Capital," Land, MDPI, vol. 10(10), pages 1-25, October.
    2. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    3. Alejandro Cleves & Eva Youkhana & Javier Toro, 2022. "A Method to Assess Agroecosystem Resilience to Climate Variability," Sustainability, MDPI, vol. 14(14), pages 1-26, July.
    4. Anil Khokhar & Abrar Yousuf & Manmohanjit Singh & Vivek Sharma & Parminder Singh Sandhu & Gajjala Ravindra Chary, 2021. "Impact of Land Configuration and Strip-Intercropping on Runoff, Soil Loss and Crop Yields under Rainfed Conditions in the Shivalik Foothills of North-West, India," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    5. Nan Zhang & Qun Zhang & Yueqiao Li & Mansheng Zeng & Wan Li & Cuiying Chang & Yongrong Xu & Chunbo Huang, 2020. "Effect of Groundcovers on Reducing Soil Erosion and Non-Point Source Pollution in Citrus Orchards on Red Soil Under Frequent Heavy Rainfall," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    6. Mathias Schaefer & Nguyen Xuan Thinh & Stefan Greiving, 2020. "How Can Climate Resilience Be Measured and Visualized? Assessing a Vague Concept Using GIS-Based Fuzzy Logic," Sustainability, MDPI, vol. 12(2), pages 1-30, January.
    7. Khanchoul K. & Balla F. & Othmani O., 2020. "Assessment Of Soil Erosion By RUSLE Model Using GIS: A Case Study Of Chemorah Basin, Algeria," Malaysian Journal of Geosciences (MJG), Zibeline International Publishing, vol. 4(2), pages 70-78, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:108:y:2021:i:3:d:10.1007_s11069-021-04803-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.