IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v107y2021i1d10.1007_s11069-021-04589-w.html
   My bibliography  Save this article

Seismic attenuation model for data gap regions using recorded and simulated ground motions

Author

Listed:
  • M. C. Raghucharan

    (Indian Institute of Technology Hyderabad)

  • Surendra Nadh Somala

    (Indian Institute of Technology Hyderabad)

  • O. Erteleva

    (Russian Academy of Sciences)

  • Eugeny Rogozhi

    (Russian Academy of Sciences)

Abstract

In this study, seismic attenuation model is derived using recorded and simulated ground motions covering the data gap region of the Indo-Gangetic Plains (IGP), employing artificial neural networks (ANN) methodology. Four independent variables moment magnitude (Mw), focal depth, epicentral distance (Repi), and average shear wave velocity up to 30 m depth (Vs30) are selected to predict peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA) (5% damping) between periods 0.01 to 4 s (twenty-five periods in total), utilizing 926 recordings (PESMOS, CIGN and synthetic database). A feed-forward ANN with Levenberg–Marquardt training algorithm is employed for training the network of input and output dataset. The optimal network architecture obtained in this study consists of 4–9–26 input, hidden and target nodes, respectively. In spite of the absence of presumed functional dependencies in ANN methodology, our model captured a number of sound physical features of earthquake ground motion: magnitude scaling, attenuation with distance and radiation damping. Further, the performance of the model is measured by the standard deviation of the error, σ(ε), and compared with the four widely used conventional GMPEs applicable for IGP region of India. The standard deviations for our model varied between 0.208 and 0.263 which is less than the classical GMPEs at all twenty-six periods of PSA. Finally, the ANN model performance is compared with recorded ground motions at four stations and conventional GMPEs, and the results affirm that this model is competent to predict the response spectrum with good accuracy for IGP region.

Suggested Citation

  • M. C. Raghucharan & Surendra Nadh Somala & O. Erteleva & Eugeny Rogozhi, 2021. "Seismic attenuation model for data gap regions using recorded and simulated ground motions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 423-446, May.
  • Handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04589-w
    DOI: 10.1007/s11069-021-04589-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-021-04589-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-021-04589-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:107:y:2021:i:1:d:10.1007_s11069-021-04589-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.