IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i3d10.1007_s11069-020-04441-7.html
   My bibliography  Save this article

Quantitative assessment of check dam system impacts on catchment flood characteristics – a case in hilly and gully area of the Loess Plateau, China

Author

Listed:
  • Tian Wang

    (Xi’an University of Technology
    Technische Universität Berlin
    Xi’an University of Technology)

  • Jingming Hou

    (Xi’an University of Technology)

  • Peng Li

    (Xi’an University of Technology
    Xi’an University of Technology)

  • Jiaheng Zhao

    (Technische Universität Berlin)

  • Zhanbin Li

    (Xi’an University of Technology
    Xi’an University of Technology)

  • Elena Matta

    (Technische Universität Berlin)

  • Liping Ma

    (Xi’an University of Technology)

  • Reinhard Hinkelmann

    (Technische Universität Berlin)

Abstract

The purpose of this study is to investigate the impact of check dams on catchment hydrological response in a small catchment on the hilly and gully area of Chinese Loess Plateau by applying a numerical model at 2 m resolution DEM. The results showed that check dams significantly increase the so-called runoff lag times (lag to generation, lag to peak and lag to end of runoff) at the channel outlet compared to catchments without check dams. Furthermore, the peak runoff discharge at the catchment outlet without check dams decreased by 93.0% compared to with check dams. The total outlet discharge, surface water stored, and infiltration were, respectively, 20.1%, 74.9% and 5.0% of the total precipitation in the check dam catchment, while 75.4%, 22.6% and 2.0% in the system without check dams. Installation of check dams also altered the spatial water distribution of maximum discharge, moving the occurrences of maximum discharge further upstream and, thus, increasing safety downstream. In conclusion, implementing check dams significantly and effectively mitigated flood processes and increased runoff infiltration upstream.

Suggested Citation

  • Tian Wang & Jingming Hou & Peng Li & Jiaheng Zhao & Zhanbin Li & Elena Matta & Liping Ma & Reinhard Hinkelmann, 2021. "Quantitative assessment of check dam system impacts on catchment flood characteristics – a case in hilly and gully area of the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3059-3077, February.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04441-7
    DOI: 10.1007/s11069-020-04441-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04441-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04441-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Wang & Lin Zhen & Qi Luo & Yun-Jie Wei & Yu Xiao, 2021. "Comprehensive Analysis of Ecological Restoration Technologies in Typical Ecologically Vulnerable Regions around the World," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    2. Qiang Zhang & Yanlong Li & Shu Yu & Lin Wang & Zuyu Chen & Jiawei Zhou, 2023. "Rapid quantitative study of check dam breach floods under extreme rainstorm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2011-2031, March.
    3. Lingqi Li & Kai Wu & Enhui Jiang & Huijuan Yin & Yuanjian Wang & Shimin Tian & Suzhen Dang, 2021. "Evaluating Runoff-Sediment Relationship Variations Using Generalized Additive Models That Incorporate Reservoir Indices for Check Dams," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3845-3860, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:3:d:10.1007_s11069-020-04441-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.