IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v105y2021i1d10.1007_s11069-020-04305-0.html
   My bibliography  Save this article

A study on the motion and accumulation process of non-cohesive particles

Author

Listed:
  • Kunlin Lu

    (Hefei University of Technology)

  • Yiming Chen

    (Hefei University of Technology)

  • Linfei Wang

    (Hefei University of Technology)

Abstract

In order to further understand the mechanism of landslide-debris flow and predict the entire movement process and accumulation range of landslide hazards, the movement process of non-cohesive particles and the distribution of accumulation at the bottom of the slope were studied. Firstly, physical laboratory-scale tests on the sliding accumulation process of non-cohesive granular accumulations under self-weight were carried out, and the effects of different volumes and gradations on the sliding accumulation were analyzed. Then, the discrete element software PFC3D was used to perform three-dimensional numerical back analysis of the tests to refine the key parameters required for the numerical simulation, and to understand better the movement and accumulation state of the granular body. The results showed that the spherical particles exhibit obvious lateral expansion during the acceleration stage, and the front-end particles had a clear "shuttle" distribution, which became even more obvious with the increase in the content of large particles. The reverse-order phenomenon of spherical particles after sliding was that the proportion of small particles in the proximal end was far higher than their original proportion in the accumulation body. With the increase in the volume of the accumulation body, the phenomenon became more obvious, and stopping of large particles above the small particles was observed. The research results can provide reference for further studies of the movement process and the distribution patterns of the slip instability failures of non-cohesive accumulation bodies.

Suggested Citation

  • Kunlin Lu & Yiming Chen & Linfei Wang, 2021. "A study on the motion and accumulation process of non-cohesive particles," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 205-225, January.
  • Handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04305-0
    DOI: 10.1007/s11069-020-04305-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04305-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04305-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:105:y:2021:i:1:d:10.1007_s11069-020-04305-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.