IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v100y2020i3d10.1007_s11069-020-03859-3.html
   My bibliography  Save this article

Stochastic finite-fault ground motion simulation for the Mw 6.7 earthquake in Lushan, China

Author

Listed:
  • Pengfei Dang

    (China Earthquake Administration
    Key Laboratory of Earthquake Engineering and Engineering Vibration of China Earthquake Administration)

  • Qifang Liu

    (Suzhou University of Science and Technology)

Abstract

The Ya’an, Sichuan Mw 6.7 earthquake occurred on April 20, 2013. In this article, the stochastic finite-fault method (EXSIM) based on dynamic corner frequency, proposed by Motazedian and Atkinson (Bull Seismol Soc Am 95(3):995–1010, 2005), is validated to be an intelligible and productive approach for the generation of high-frequency strong ground motion. The validated model parameters were considered for the simulation at 31 selected stations, which are less than 200 km away from the fault. The input parameters included site condition, source term, and path term. The calibration of the input parameters, such as the stress drop, was achieved by using misfit functions between the observed PSA (pseudo-acceleration response spectra) and simulated PSA in the time domain. Some of the other parameters, such as distance-dependent duration, high-frequency attenuation parameter kappa, and local amplification functions, were calibrated by considering the observed recordings. In this study, we attempted to employ two different slip models for strong ground motion simulation, so that the influence on the simulation results can be revealed. Our results depicted that although the method cannot combine well, the directivity effects and the soil conditions are not adequately represented at individual stations, the synthetics satisfactorily match with the seismic characteristics regarding peak ground acceleration (PGA), response spectra, Fourier spectrum, and time history, for both the time and frequency range considered. The results also demonstrated that there is a slight difference between the simulation results of the two slip models. Finally, we compared the effects of different distance-dependent duration models for the simulated PGA. It illustrates that it is difficult to find a balance between the ground motion duration and PGA at stations with fault distance less than 20 km, which makes the duration and PGA to coincide well with the observed recordings.

Suggested Citation

  • Pengfei Dang & Qifang Liu, 2020. "Stochastic finite-fault ground motion simulation for the Mw 6.7 earthquake in Lushan, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(3), pages 1215-1241, February.
  • Handle: RePEc:spr:nathaz:v:100:y:2020:i:3:d:10.1007_s11069-020-03859-3
    DOI: 10.1007/s11069-020-03859-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-03859-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-03859-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Dang & Jie Cui & Qifang Liu, 2023. "Site amplification and rupture velocity in EXSIM and updated EXSIM during the 2017 Mw6.6 Jiuzhaigou, China earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1105-1123, March.
    2. Pengfei Dang & Qifang Liu & Jian Song, 2020. "Simulation of the Jiuzhaigou, China, earthquake by stochastic finite-fault method based on variable stress drop," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2295-2321, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:100:y:2020:i:3:d:10.1007_s11069-020-03859-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.