IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v88y2025i5d10.1007_s00184-024-00969-x.html
   My bibliography  Save this article

Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments

Author

Listed:
  • Yozo Tonaki

    (Osaka University
    Osaka University)

  • Yusuke Kaino

    (Kobe University)

  • Masayuki Uchida

    (Osaka University
    Osaka University
    Japan Science and Technology Agency)

Abstract

We deal with parameter estimation for linear parabolic second-order stochastic partial differential equations in two space dimensions driven by two types of Q-Wiener processes based on high frequency data with respect to time and space. We propose minimum contrast estimators of the coefficient parameters based on temporal and spatial increments, and provide adaptive estimators of the coefficient parameters based on approximate coordinate processes. We also give an example and simulation results of the proposed estimators.

Suggested Citation

  • Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2025. "Parametric estimation for linear parabolic SPDEs in two space dimensions based on temporal and spatial increments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 88(5), pages 601-656, July.
  • Handle: RePEc:spr:metrik:v:88:y:2025:i:5:d:10.1007_s00184-024-00969-x
    DOI: 10.1007/s00184-024-00969-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-024-00969-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-024-00969-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    2. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.
    3. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2023. "Parameter estimation for linear parabolic SPDEs in two space dimensions based on high frequency data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(4), pages 1568-1589, December.
    4. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    5. Cialenco, Igor & Glatt-Holtz, Nathan, 2011. "Parameter estimation for the stochastically perturbed Navier-Stokes equations," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 701-724, April.
    6. Igor Cialenco & Ruoting Gong & Yicong Huang, 2018. "Trajectory fitting estimators for SPDEs driven by additive noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2025. "Small diffusivity asymptotics for a linear parabolic SPDE in two space dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 28(2), pages 1-46, August.
    2. Yozo Tonaki & Yusuke Kaino & Masayuki Uchida, 2024. "Parameter estimation for a linear parabolic SPDE model in two space dimensions with a small noise," Statistical Inference for Stochastic Processes, Springer, vol. 27(1), pages 123-179, April.
    3. Hildebrandt, Florian & Trabs, Mathias, 2023. "Nonparametric calibration for stochastic reaction–diffusion equations based on discrete observations," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 171-217.
    4. Cialenco, Igor & Kim, Hyun-Jung, 2022. "Parameter estimation for discretely sampled stochastic heat equation driven by space-only noise," Stochastic Processes and their Applications, Elsevier, vol. 143(C), pages 1-30.
    5. Bibinger, Markus & Trabs, Mathias, 2020. "Volatility estimation for stochastic PDEs using high-frequency observations," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 3005-3052.
    6. Benth, Fred Espen & Schroers, Dennis & Veraart, Almut E.D., 2022. "A weak law of large numbers for realised covariation in a Hilbert space setting," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 241-268.
    7. Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Sep 2025.
    8. Janák, Josef & Reiß, Markus, 2024. "Parameter estimation for the stochastic heat equation with multiplicative noise from local measurements," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    9. di Nunno, Giulia & Ortiz–Latorre, Salvador & Petersson, Andreas, 2023. "SPDE bridges with observation noise and their spatial approximation," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 170-207.
    10. Pavel Kříž & Leszek Szała, 2020. "The Combined Estimator for Stochastic Equations on Graphs with Fractional Noise," Mathematics, MDPI, vol. 8(10), pages 1-21, October.
    11. Patrick Bossert, 2024. "Parameter estimation for second-order SPDEs in multiple space dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 485-583, October.
    12. Cheng, Ziteng & Cialenco, Igor & Gong, Ruoting, 2020. "Bayesian estimations for diagonalizable bilinear SPDEs," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 845-877.
    13. Igor Cialenco, 2018. "Statistical inference for SPDEs: an overview," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 309-329, July.
    14. Igor Cialenco & Ruoting Gong & Yicong Huang, 2018. "Trajectory fitting estimators for SPDEs driven by additive noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 1-19, April.
    15. Igor Cialenco & Hyun-Jung Kim & Sergey V. Lototsky, 2020. "Statistical analysis of some evolution equations driven by space-only noise," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 83-103, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:88:y:2025:i:5:d:10.1007_s00184-024-00969-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.