IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i3d10.1007_s11009-025-10195-1.html
   My bibliography  Save this article

On the Mixed Extended Generalized Pólya Process and Its Stochastic Intensity Paradox

Author

Listed:
  • Ji Hwan Cha

    (Ewha Womans University)

  • Maxim Finkelstein

    (University of the Free State
    University of Strathclyde)

Abstract

A new class of counting processes generated by the mixture of the extended generalized Pólya process is defined and its properties are studied. The general form of the corresponding stochastic intensity is derived. Specifying geometric, negative binomial, Poisson, and binomial distributions as the mixing distributions, four parametric classes of counting processes are defined and stochastically characterized. It is shown that relevant monotonicity properties of the corresponding stochastic intensities do not follow ‘direct intuition’ and can dramatically change depending on the mixing distribution. The practical meaning of the considered parametric models is also interpreted from the reliability point of view.

Suggested Citation

  • Ji Hwan Cha & Maxim Finkelstein, 2025. "On the Mixed Extended Generalized Pólya Process and Its Stochastic Intensity Paradox," Methodology and Computing in Applied Probability, Springer, vol. 27(3), pages 1-18, September.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:3:d:10.1007_s11009-025-10195-1
    DOI: 10.1007/s11009-025-10195-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10195-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10195-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Navarro, Jorge & Fernández-Martínez, Pedro, 2021. "Redundancy in systems with heterogeneous dependent components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 766-778.
    2. Maxim Finkelstein, 2008. "Failure Rate Modelling for Reliability and Risk," Springer Series in Reliability Engineering, Springer, number 978-1-84800-986-8, March.
    3. Alan G. Hawkes, 2018. "Hawkes processes and their applications to finance: a review," Quantitative Finance, Taylor & Francis Journals, vol. 18(2), pages 193-198, February.
    4. Isham, Valerie & Westcott, Mark, 1979. "A self-correcting point process," Stochastic Processes and their Applications, Elsevier, vol. 8(3), pages 335-347, May.
    5. Francisco Germán Badía & María Dolores Berrade, 2022. "On the Residual Lifetime and Inactivity Time in Mixtures," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    3. Majid Asadi & Maxim Finkelstein, 2024. "On variability of the mean remaining lifetime at random age," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 717-730, September.
    4. Maxim S. Finkelstein, 2008. "On systems with shared resources and optimal switching strategies," MPIDR Working Papers WP-2008-025, Max Planck Institute for Demographic Research, Rostock, Germany.
    5. Montoro-Cazorla, Delia & Pérez-Ocón, Rafael, 2018. "Constructing a Markov process for modelling a reliability system under multiple failures and replacements," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 34-47.
    6. Ying Chen & Ulrich Horst & Hoang Hai Tran, 2019. "Portfolio liquidation under transient price impact -- theoretical solution and implementation with 100 NASDAQ stocks," Papers 1912.06426, arXiv.org.
    7. Ji Hwan Cha & Maxim Finkelstein, 2020. "On optimal life extension for degrading systems," Journal of Risk and Reliability, , vol. 234(3), pages 487-495, June.
    8. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    9. Maxim Finkelstein & Ji Hwan Cha, 2022. "Reducing degradation and age of items in imperfect repair modeling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1058-1081, December.
    10. Anders S. G. Andrae & Mengjun Xia & Jianli Zhang & Xiaoming Tang, 2016. "Practical Eco-Design and Eco-Innovation of Consumer Electronics—the Case of Mobile Phones," Challenges, MDPI, vol. 7(1), pages 1-19, February.
    11. Ji Hwan Cha & Maxim Finkelstein, 2020. "Is perfect repair always perfect?," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 90-104, March.
    12. Wang, Xiaolin & Li, Lishuai & Xie, Min, 2020. "An unpunctual preventive maintenance policy under two-dimensional warranty," European Journal of Operational Research, Elsevier, vol. 282(1), pages 304-318.
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    14. Mercuri, Lorenzo & Perchiazzo, Andrea & Rroji, Edit, 2024. "A Hawkes model with CARMA(p,q) intensity," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 1-26.
    15. Kyungsub Lee, 2024. "Self and mutually exciting point process embedding flexible residuals and intensity with discretely Markovian dynamics," Papers 2401.13890, arXiv.org, revised Mar 2025.
    16. Ting Li & James Anderson, 2013. "Shaping human mortality patterns through intrinsic and extrinsic vitality processes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 28(12), pages 341-372.
    17. Ji Cha & Maxim S. Finkelstein, 2009. "Stochastically ordered subpopulations and optimal burn-in procedure," MPIDR Working Papers WP-2009-030, Max Planck Institute for Demographic Research, Rostock, Germany.
    18. Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Finkelstein, Maxim & Ludick, Zani, 2014. "On some steady-state characteristics of systems with gradual repair," Reliability Engineering and System Safety, Elsevier, vol. 128(C), pages 17-23.
    20. Jae‐Hak Lim & Dae‐Kyung Kim & Dong Ho Park, 2019. "Maintenance optimization for second‐hand products following periodic imperfect preventive maintenance warranty period," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 35(4), pages 1077-1089, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:3:d:10.1007_s11009-025-10195-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.