IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v27y2025i3d10.1007_s11009-025-10178-2.html
   My bibliography  Save this article

On Defective Renewal Equations and Compound Geometric Distributions, with Applications in Ruin Theory

Author

Listed:
  • Stathis Chadjiconstantinidis

    (University of Piraeus)

  • Georgios Psarrakos

    (University of Piraeus)

Abstract

In this paper, by using a Weyl-type operator, the notion of the n-th order equilibrium function of a given function is introduced and higher-order equilibrium properties for the solution of a defective renewal equation are studied. It is shown that the n-th order equilibrium of such solution also satisfies a defective renewal equation. Furthermore, convolution representations for these functions are given. Several applications for compound geometric distributions and for convolutions involving a compound geometric distribution are studied. Further expressions for functions with interest in ruin theory are obtained, as well as mixture representations. Finally, some bounds and applications are also provided to the classical risk model.

Suggested Citation

  • Stathis Chadjiconstantinidis & Georgios Psarrakos, 2025. "On Defective Renewal Equations and Compound Geometric Distributions, with Applications in Ruin Theory," Methodology and Computing in Applied Probability, Springer, vol. 27(3), pages 1-30, September.
  • Handle: RePEc:spr:metcap:v:27:y:2025:i:3:d:10.1007_s11009-025-10178-2
    DOI: 10.1007/s11009-025-10178-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-025-10178-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-025-10178-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Yu & Pai, Jeffrey S., 2003. "On the nth stop-loss transform order of ruin probability," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 51-60, February.
    2. Georgios Psarrakos, 2022. "Relations between integrated tails and moments based on the deficit at ruin in the renewal risk model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(21), pages 7631-7651, November.
    3. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    4. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    5. Enkelejd Hashorva, 2013. "On beta-product convolutions," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2013(1), pages 69-83.
    6. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    7. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    8. Enrico Fagiuoli & Franco Pellerey, 1993. "New partial orderings and applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(6), pages 829-842, October.
    9. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    10. Willmot, Gordon E., 1997. "Bounds for compound distributions based on mean residual lifetimes and equilibrium distributions," Insurance: Mathematics and Economics, Elsevier, vol. 21(1), pages 25-42, October.
    11. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2021. "On s-convex bounds for Beta-unimodal distributions with applications to basis risk assessment," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2021(6), pages 476-504, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    2. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    3. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    4. Tsai, Cary Chi-Liang & Sun, Li-juan, 2004. "On the discounted distribution functions for the Erlang(2) risk process," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 5-19, August.
    5. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    6. Willmot, Gordon E., 2004. "A note on a class of delayed renewal risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 251-257, April.
    7. Cai, Jun & Dickson, David C. M., 2002. "On the expected discounted penalty function at ruin of a surplus process with interest," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 389-404, June.
    8. Michael V. Boutsikas & Konstadinos Politis, 2017. "Exit Times, Overshoot and Undershoot for a Surplus Process in the Presence of an Upper Barrier," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 75-95, March.
    9. Tsai, Cary Chi-Liang, 2001. "On the discounted distribution functions of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 401-419, June.
    10. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    11. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    12. Sarkar, Joykrishna & Sen, Arusharka, 2005. "Weak convergence approach to compound Poisson risk processes perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 421-432, June.
    13. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    14. Stathis Chadjiconsatntinidis, 2024. "Two-sided Bounds for Renewal Equations and Ruin Quantities," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-54, June.
    15. Lin, X.Sheldon & Pavlova, Kristina P., 2006. "The compound Poisson risk model with a threshold dividend strategy," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 57-80, February.
    16. Psarrakos, Georgios, 2008. "Tail bounds for the distribution of the deficit in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 197-202, October.
    17. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    18. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    19. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    20. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:27:y:2025:i:3:d:10.1007_s11009-025-10178-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.