IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v12y2010i4d10.1007_s11009-009-9153-3.html
   My bibliography  Save this article

Level Crossing Prediction with Neural Networks

Author

Listed:
  • Halfdan Grage

    (Novo Nordisk A/S)

  • Jan Holst

    (Lund University)

  • Georg Lindgren

    (Lund University)

  • Mietek Saklak

    (Visma Software AB)

Abstract

A level crossing predictor or alarm system with prediction horizon k is said to be optimal if it, at time t detects that an upcrossing will occur at time t + k, with a certain high probability and simultaneously gives a minimum number of false alarms. For a Gaussian stationary process, the optimal level crossing predictor can be explicitly specified in terms of the predicted value of the process itself and of its derivative. To the authors knowledge this simple optimal solution has not been used to any substantial degree. In this paper it is shown how a neural network can be trained to approximate an optimal alarm system arbitrarily well. As in other methods of parametrization, the choice of model structure, as well as an appropriate representation of data, are crucial for a good result. Comparative studies are presented for two Gaussian ARMA-processes, for which the optimal predictor can be derived theoretically. These studies confirm that a properly trained neural network can indeed approximate an optimal alarm system quite well – with due attention paid to the problems of model structure and representation of data. The technique is also tested on a strongly non-Gaussian Duffing process with satisfactory results.

Suggested Citation

  • Halfdan Grage & Jan Holst & Georg Lindgren & Mietek Saklak, 2010. "Level Crossing Prediction with Neural Networks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 623-645, December.
  • Handle: RePEc:spr:metcap:v:12:y:2010:i:4:d:10.1007_s11009-009-9153-3
    DOI: 10.1007/s11009-009-9153-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-009-9153-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-009-9153-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Svensson & J. Holst & R. Lindquist & G. Lindgren, 1996. "Optimal Prediction Of Catastrophes In Autoregressive Moving‐Average Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 17(5), pages 511-531, September.
    2. Stig‐Inge Beckman & Jan Holst & Georg Lindgren, 1990. "Alarm Characteristics For A Flood Warning System With Deterministic Components," Journal of Time Series Analysis, Wiley Blackwell, vol. 11(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pasquale Cirillo & Jürg Hüsler & Pietro Muliere, 2013. "Alarm Systems and Catastrophes from a Diverse Point of View," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 821-839, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taleb, Nassim Nicholas & Bar-Yam, Yaneer & Cirillo, Pasquale, 2022. "On single point forecasts for fat-tailed variables," International Journal of Forecasting, Elsevier, vol. 38(2), pages 413-422.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Nassim Nicholas Taleb & Yaneer Bar-Yam & Pasquale Cirillo, 2020. "On Single Point Forecasts for Fat-Tailed Variables," Papers 2007.16096, arXiv.org.
    4. M. Antunes & M. A. Amaral Turkman & K. F. Turkman, 2003. "A Bayesian Approach to Event Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(6), pages 631-646, November.
    5. Pasquale Cirillo & Jürg Hüsler & Pietro Muliere, 2013. "Alarm Systems and Catastrophes from a Diverse Point of View," Methodology and Computing in Applied Probability, Springer, vol. 15(4), pages 821-839, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:12:y:2010:i:4:d:10.1007_s11009-009-9153-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.