IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v48y1998i2p153-168.html
   My bibliography  Save this article

The Montagne Russe algorithm for global optimization

Author

Listed:
  • Jean-Pierre Aubin
  • Laurent Najman

Abstract

The “Montagnes Russes” algorithm for finding the global minima of a lower semi-continuous function (thus involving state constraints) is a descent algorithm applied to an auxiliary function whose local and global minima are the global minima of the original function. Although this auxiliary function decreases along the trajectory of any of its minimizing sequences, the original function jumps above local maxima, leaves local minima, play “Montagnes Russes” (called “American Mountains” in Russian and “Big Dipper” in American!), but, ultimately, converges to its infimum. This auxiliary function is approximated by an increasing sequence of functions defined recursively at each point of the minimizing sequence. Copyright Springer-Verlag Berlin Heidelberg 1998

Suggested Citation

  • Jean-Pierre Aubin & Laurent Najman, 1998. "The Montagne Russe algorithm for global optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 48(2), pages 153-168, November.
  • Handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:153-168
    DOI: 10.1007/s001860050018
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s001860050018
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s001860050018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:48:y:1998:i:2:p:153-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.