IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i3d10.1007_s10985-025-09662-1.html
   My bibliography  Save this article

Estimating the risk of cancer with and without a screening history

Author

Listed:
  • Dongfeng Wu

    (University of Louisville)

Abstract

A probability method to estimate cancer risk for asymptomatic individuals for the rest of life was developed based on one’s current age and screening history using the disease progressive model. The risk is a function of the transition probability density from the disease-free to the preclinical state, the sojourn time in the preclinical state and the screening sensitivity if one had a screening history with negative results. The method can be applied to any chronic disease. As an example, the method was applied to estimate women’s breast cancer risk using parameters estimated from the Health Insurance Plan of Greater New York under two scenarios: with and without a screening history, and obtain some meaningful results.

Suggested Citation

  • Dongfeng Wu, 2025. "Estimating the risk of cancer with and without a screening history," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(3), pages 702-712, July.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09662-1
    DOI: 10.1007/s10985-025-09662-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09662-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09662-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dongfeng Wu & Gary L. Rosner & Lyle Broemeling, 2005. "MLE and Bayesian Inference of Age-Dependent Sensitivity and Transition Probability in Periodic Screening," Biometrics, The International Biometric Society, vol. 61(4), pages 1056-1063, December.
    2. Wu Dongfeng & Kafadar Karen & Rosner Gary L. & Broemeling Lyle D., 2012. "The Lead Time Distribution When Lifetime is Subject to Competing Risks in Cancer Screening," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Rice & Brent A. Johnson & Robert L. Strawderman, 2022. "Screening for chronic diseases: optimizing lead time through balancing prescribed frequency and individual adherence," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 605-636, October.
    2. Ayman Hijazy & András Zempléni, 2021. "Gamma Process-Based Models for Disease Progression," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 241-255, March.
    3. Dongfeng Wu & Gary L. Rosner & Lyle D. Broemeling, 2007. "Bayesian Inference for the Lead Time in Periodic Cancer Screening," Biometrics, The International Biometric Society, vol. 63(3), pages 873-880, September.
    4. Rui Chen & Menggang Yu, 2021. "Tailored optimal posttreatment surveillance for cancer recurrence," Biometrics, The International Biometric Society, vol. 77(3), pages 942-955, September.
    5. Wu Dongfeng & Kafadar Karen & Rosner Gary L. & Broemeling Lyle D., 2012. "The Lead Time Distribution When Lifetime is Subject to Competing Risks in Cancer Screening," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-16, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09662-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.