IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i3d10.1007_s10985-025-09661-2.html
   My bibliography  Save this article

Estimation and variable selection for semiparametric transformation models with length-biased survival data

Author

Listed:
  • Jih-Chang Yu

    (National Taipei University)

  • Yu-Jen Cheng

    (National Tsing Hua University)

Abstract

In this study, we investigate estimation and variable selection for semiparametric transformation models with length-biased survival data—a special case of left truncation commonly encountered in the social sciences and cancer prevention trials. To correct for sampling bias, conventional methods such as conditional likelihood, martingale estimating equations, and composite likelihood have been proposed. However, these methods may be less efficient due to their reliance on only partial information from the full likelihood. In contrast, we adopt a full-likelihood approach under the semiparametric transformation model and propose a unified and more efficient nonparametric maximum likelihood estimator (NPMLE). To perform variable selection, we incorporate an adaptive least absolute shrinkage and selection operator (ALASSO) penalty into the full likelihood. We show that when the NPMLE is used as the initial value, the resulting one-step ALASSO estimator—offering a simplified version of the Newton–Raphson method—achieves oracle properties. Theoretical properties of the proposed methods are established using empirical process techniques. The performance of the methods is evaluated through simulation studies and illustrated with a real data application.

Suggested Citation

  • Jih-Chang Yu & Yu-Jen Cheng, 2025. "Estimation and variable selection for semiparametric transformation models with length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(3), pages 674-701, July.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09661-2
    DOI: 10.1007/s10985-025-09661-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09661-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09661-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    3. Donglin Zeng & Lu Mao & D. Y. Lin, 2016. "Maximum likelihood estimation for semiparametric transformation models with interval-censored data," Biometrika, Biometrika Trust, vol. 103(2), pages 253-271.
    4. Xiaoxi Liu & Donglin Zeng, 2013. "Variable selection in semiparametric transformation models for right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 859-876.
    5. J. Fan & J. Chen, 1999. "One‐step local quasi‐likelihood estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 927-943.
    6. Yu-Jen Cheng & Chiung-Yu Huang, 2014. "Combined estimating equation approaches for semiparametric transformation models with length-biased survival data," Biometrics, The International Biometric Society, vol. 70(3), pages 608-618, September.
    7. Lin, Cunjie & Zhou, Yong, 2016. "Semiparametric varying-coefficient model with right-censored and length-biased data," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 119-144.
    8. A. N. Pettitt, 1984. "Proportional Odds Models for Survival Data and Estimates Using Ranks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 33(2), pages 169-175, June.
    9. Chiung-Yu Huang & Jing Qin & Dean A. Follmann, 2012. "A maximum pseudo-profile likelihood estimator for the Cox model under length-biased sampling," Biometrika, Biometrika Trust, vol. 99(1), pages 199-210.
    10. Shen, Yu & Ning, Jing & Qin, Jing, 2009. "Analyzing Length-Biased Data With Semiparametric Transformation and Accelerated Failure Time Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1192-1202.
    11. Jin Piao & Jing Ning & Yu Shen, 2019. "Semiparametric model for bivariate survival data subject to biased sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 409-429, April.
    12. Kani Chen, 2002. "Semiparametric analysis of transformation models with censored data," Biometrika, Biometrika Trust, vol. 89(3), pages 659-668, August.
    13. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    2. Yu Shen & Jing Ning & Jing Qin, 2017. "Nonparametric and semiparametric regression estimation for length-biased survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 3-24, January.
    3. Pao-sheng Shen & Yi Liu, 2019. "Pseudo maximum likelihood estimation for the Cox model with doubly truncated data," Statistical Papers, Springer, vol. 60(4), pages 1207-1224, August.
    4. Zhiping Qiu & Jing Qin & Yong Zhou, 2016. "Composite Estimating Equation Method for the Accelerated Failure Time Model with Length-biased Sampling Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 396-415, June.
    5. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    6. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    7. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    8. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    9. Jianbo Li & Minggao Gu & Tao Hu, 2012. "General partially linear varying-coefficient transformation models for ranking data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1475-1488, January.
    10. Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    11. Zhang, Hao Helen & Lu, Wenbin & Wang, Hansheng, 2010. "On sparse estimation for semiparametric linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1594-1606, August.
    12. Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
    13. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    14. Ma, Huijuan & Zhang, Feipeng & Zhou, Yong, 2015. "Composite estimating equation approach for additive risk model with length-biased and right-censored data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 45-53.
    15. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    16. Huaihou Chen & Donglin Zeng & Yuanjia Wang, 2017. "Penalized nonlinear mixed effects model to identify biomarkers that predict disease progression," Biometrics, The International Biometric Society, vol. 73(4), pages 1343-1354, December.
    17. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    18. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    19. Yanqing Sun & Qingning Zhou & Peter B. Gilbert, 2023. "Analysis of the Cox Model with Longitudinal Covariates with Measurement Errors and Partly Interval Censored Failure Times, with Application to an AIDS Clinical Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 430-454, July.
    20. Huang, Bin & Wang, Qihua, 2010. "Semiparametric analysis based on weighted estimating equations for transformation models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2078-2090, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09661-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.