Author
Listed:
- Seoyoon Cho
(University of North Carolina at Chapel Hill)
- Matthew A. Psioda
(Statistics and Data Science Innovation Hub, GlaxoSmithKline)
- Joseph G. Ibrahim
(University of North Carolina at Chapel Hill)
Abstract
We propose a joint model for multiple time-to-event outcomes where the outcomes have a cure structure. When a subset of a population is not susceptible to an event of interest, traditional survival models cannot accommodate this type of phenomenon. For example, for patients with melanoma, certain modern treatment options can reduce the mortality and relapse rates. Traditional survival models assume the entire population is at risk for the event of interest, i.e., has a non-zero hazard at all times. However, cure rate models allow a portion of the population to be risk-free of the event of interest. Our proposed model uses a novel truncated Gaussian copula to jointly model bivariate time-to-event outcomes of this type. In oncology studies, multiple time-to-event outcomes (e.g., overall survival and relapse-free or progression-free survival) are typically of interest. Therefore, multivariate methods to analyze time-to-event outcomes with a cure structure are potentially of great utility. We formulate a joint model directly on the time-to-event outcomes (i.e., unconditional on whether an individual is cured or not). Dependency between the time-to-event outcomes is modeled via the correlation matrix of the truncated Gaussian copula. A Markov Chain Monte Carlo procedure is proposed for model fitting. Simulation studies and a real data analysis using a melanoma clinical trial data are presented to illustrate the performance of the method and the proposed model is compared to independent models.
Suggested Citation
Seoyoon Cho & Matthew A. Psioda & Joseph G. Ibrahim, 2025.
"Bayesian bivariate cure rate models using Gaussian copulas,"
Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(3), pages 658-673, July.
Handle:
RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09660-3
DOI: 10.1007/s10985-025-09660-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09660-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.