IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i3d10.1007_s10985-025-09659-w.html
   My bibliography  Save this article

Wild bootstrap for counting process-based statistics: a martingale theory-based approach

Author

Listed:
  • Marina T. Dietrich

    (Vrije Universiteit Amsterdam
    University Augsburg)

  • Dennis Dobler

    (Vrije Universiteit Amsterdam
    TU Dortmund University
    University Alliance Ruhr)

  • Mathisca C. M. Gunst

    (Vrije Universiteit Amsterdam)

Abstract

The wild bootstrap is a popular resampling method in the context of time-to-event data analysis. Previous works established the large sample properties of it for applications to different estimators and test statistics. It can be used to justify the accuracy of inference procedures such as hypothesis tests or time-simultaneous confidence bands. This paper provides a general framework for establishing large sample properties in a unified way by using martingale structures. This framework includes most of the well-known parametric, semiparametric and nonparametric statistical methods in time-to-event analysis. Along the way of proving the validity of the wild bootstrap, a new variant of Rebolledo’s martingale central limit theorem for counting process-based martingales is developed as well.

Suggested Citation

  • Marina T. Dietrich & Dennis Dobler & Mathisca C. M. Gunst, 2025. "Wild bootstrap for counting process-based statistics: a martingale theory-based approach," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(3), pages 631-657, July.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09659-w
    DOI: 10.1007/s10985-025-09659-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09659-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09659-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    2. Ditzhaus, Marc & Pauly, Markus, 2019. "Wild bootstrap logrank tests with broader power functions for testing superiority," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 1-11.
    3. Dennis Dobler & Markus Pauly & ThomasH. Scheike, 2019. "Confidence bands for multiplicative hazards models: Flexible resampling approaches," Biometrics, The International Biometric Society, vol. 75(3), pages 906-916, September.
    4. D. Dobler & J. Beyersmann & M. Pauly, 2017. "Non-strange weird resampling for complex survival data," Biometrika, Biometrika Trust, vol. 104(3), pages 699-711.
    5. M Hiabu & J P Nielsen & T H Scheike, 2021. "Nonsmooth backfitting for the excess risk additive regression model with two survival time scales [A linear regression model for the analysis of life times]," Biometrika, Biometrika Trust, vol. 108(2), pages 491-506.
    6. Giorgos Bakoyannis, 2021. "Nonparametric analysis of nonhomogeneous multistate processes with clustered observations," Biometrics, The International Biometric Society, vol. 77(2), pages 533-546, June.
    7. Tobias Bluhmki & Dennis Dobler & Jan Beyersmann & Markus Pauly, 2019. "The wild bootstrap for multivariate Nelson–Aalen estimators," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 97-127, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Feifel & D. Dobler, 2021. "Dynamic inference in general nested case‐control designs," Biometrics, The International Biometric Society, vol. 77(1), pages 175-185, March.
    2. Tobias Bluhmki & Dennis Dobler & Jan Beyersmann & Markus Pauly, 2019. "The wild bootstrap for multivariate Nelson–Aalen estimators," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 97-127, January.
    3. Marc Ditzhaus & Jon Genuneit & Arnold Janssen & Markus Pauly, 2023. "CASANOVA: Permutation inference in factorial survival designs," Biometrics, The International Biometric Society, vol. 79(1), pages 203-215, March.
    4. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    5. Julie K. Furberg & Per K. Andersen & Sofie Korn & Morten Overgaard & Henrik Ravn, 2023. "Bivariate pseudo-observations for recurrent event analysis with terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 256-287, April.
    6. Xiaowei Sun & Jieli Ding & Liuquan Sun, 2020. "A semiparametric additive rates model for the weighted composite endpoint of recurrent and terminal events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 471-492, July.
    7. Dayu Sun & Yuanyuan Guo & Yang Li & Jianguo Sun & Wanzhu Tu, 2024. "A flexible time-varying coefficient rate model for panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 30(4), pages 721-741, October.
    8. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.
    9. Qing Pan & Douglas E. Schaubel, 2009. "Flexible Estimation of Differences in Treatment-Specific Recurrent Event Means in the Presence of a Terminating Event," Biometrics, The International Biometric Society, vol. 65(3), pages 753-761, September.
    10. Miao Han & Liuquan Sun & Yutao Liu & Jun Zhu, 2018. "Joint analysis of recurrent event data with additive–multiplicative hazards model for the terminal event time," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 523-547, July.
    11. Debashis Ghosh, 2003. "Goodness-of-Fit Methods for Additive-Risk Models in Tumorigenicity Experiments," Biometrics, The International Biometric Society, vol. 59(3), pages 721-726, September.
    12. Xin Chen & Jieli Ding & Liuquan Sun, 2018. "A semiparametric additive rate model for a modulated renewal process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(4), pages 675-698, October.
    13. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    14. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.
    15. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    16. D. Y. Lin & L. J. Wei & Z. Ying, 2002. "Model-Checking Techniques Based on Cumulative Residuals," Biometrics, The International Biometric Society, vol. 58(1), pages 1-12, March.
    17. Sankaran, P.G. & Anisha, P., 2012. "Additive hazards models for gap time data with multiple causes," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1454-1462.
    18. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    19. Chu-Chih Chen & , Chuan-Pin Lee & Yuan-Horng Yan & Tsun-Jen Cheng & Pranab K. Sen, 2021. "A partial likelihood-based two-dimensional multistate markov model with application to myocardial infarction and stroke recurrence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 282-303, November.
    20. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09659-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.