IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v31y2025i3d10.1007_s10985-025-09655-0.html
   My bibliography  Save this article

Regression analysis of a graphical proportional hazards model for informatively left-truncated current status data

Author

Listed:
  • Mengyue Zhang

    (Jilin University)

  • Shishu Zhao

    (Jilin University)

  • Shuying Wang

    (Changchun University of Technology)

  • Xiaolin Xu

    (Jilin University)

Abstract

In survival analysis, researchers commonly focus on variable selection issues in real–world data, particularly when complex network structures exist among covariates. Additionally, due to factors such as data collection costs and delayed entry, real-world data often exhibit censoring and truncation phenomena.This paper addresses left-truncated current status data by employing a copula-based approach to model the relationship between censoring time and failure time. Based on this, we investigate the problem of variable selection in the context of complex network structures among covariates. To this end, we integrate Markov Random Field (MRF) with the Proportional Hazards (PH) model, and extend the latter to more flexibly characterize the correlation structure among covariates. For solving the constructed model, we propose a penalized optimization method and utilize spline functions to estimate the baseline hazard function. Through numerical simulation experiments and case studies of clinical trial data, we comprehensively evaluate the effectiveness and performance of the proposed model and its parameter inference strategy. This evaluation not only demonstrates the robustness of the proposed model in handling complex disease data but also further verifies the high precision and reliability of the parameter estimation method.

Suggested Citation

  • Mengyue Zhang & Shishu Zhao & Shuying Wang & Xiaolin Xu, 2025. "Regression analysis of a graphical proportional hazards model for informatively left-truncated current status data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(3), pages 498-542, July.
  • Handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09655-0
    DOI: 10.1007/s10985-025-09655-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-025-09655-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-025-09655-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qiqing Yu, 2023. "The generalised MLE with truncated interval-censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 35(2), pages 266-282, April.
    2. Shen, Pao-sheng, 2009. "Semiparametric analysis of survival data with left truncation and right censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4417-4432, October.
    3. Gery Geenens, 2024. "(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem," Mathematics, MDPI, vol. 12(3), pages 1-7, January.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Shen, Pao-sheng, 2015. "Conditional MLE for the proportional hazards model with left-truncated and interval-censored data," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 164-171.
    6. Rivest, Louis-Paul & Wells, Martin T., 2001. "A Martingale Approach to the Copula-Graphic Estimator for the Survival Function under Dependent Censoring," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 138-155, October.
    7. Pao-Sheng Shen, 2020. "Correction to: Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 893-894, October.
    8. Pao-Sheng Shen, 2020. "Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 624-637, July.
    9. Wei Pan & Rick Chappell, 2002. "Estimation in the Cox Proportional Hazards Model with Left-Truncated and Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(1), pages 64-70, March.
    10. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    11. Fei Gao & Kwun Chuen Gary Chan, 2019. "Semiparametric regression analysis of length‐biased interval‐censored data," Biometrics, The International Biometric Society, vol. 75(1), pages 121-132, March.
    12. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    13. Ebrahimi, Nader & Molefe, Daniel, 2003. "Survival function estimation when lifetime and censoring time are dependent," Journal of Multivariate Analysis, Elsevier, vol. 87(1), pages 101-132, October.
    14. Ling Ma & Tao Hu & Jianguo Sun, 2015. "Sieve maximum likelihood regression analysis of dependent current status data," Biometrika, Biometrika Trust, vol. 102(3), pages 731-738.
    15. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    16. Balakrishnan, N. & Kundu, Debasis, 2013. "Hybrid censoring: Models, inferential results and applications," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 166-209.
    17. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.
    18. Chun-Lung Su & Pao-sheng Shen, 2021. "On consistency of the monotone NPMLE of survival function under the mixed case interval-censored model with left truncation," Computational Statistics, Springer, vol. 36(3), pages 1871-1883, September.
    19. Li‐Pang Chen & Grace Y. Yi, 2021. "Analysis of noisy survival data with graphical proportional hazards measurement error models," Biometrics, The International Biometric Society, vol. 77(3), pages 956-969, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyi Lu & Shuwei Li & Liuquan Sun, 2023. "Combined estimating equation approaches for the additive hazards model with left-truncated and interval-censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 672-697, July.
    2. Pao-sheng Shen & Yingwei Peng & Hsin-Jen Chen & Chyong-Mei Chen, 2022. "Maximum likelihood estimation for length-biased and interval-censored data with a nonsusceptible fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(1), pages 68-88, January.
    3. Lu, Huimin & Wang, Yilong & Bing, Heming & Wang, Shuying & Li, Niya, 2025. "Efficient regularized estimation of graphical proportional hazards model with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 209(C).
    4. Fan Feng & Guanghui Cheng & Jianguo Sun, 2023. "Variable Selection for Length-Biased and Interval-Censored Failure Time Data," Mathematics, MDPI, vol. 11(22), pages 1-20, November.
    5. Li‐Pang Chen & Bangxu Qiu, 2023. "Analysis of length‐biased and partly interval‐censored survival data with mismeasured covariates," Biometrics, The International Biometric Society, vol. 79(4), pages 3929-3940, December.
    6. Bo Zhao & Shuying Wang & Chunjie Wang, 2024. "Variable selection in proportional odds model with informatively interval-censored data," Statistical Papers, Springer, vol. 65(4), pages 2461-2488, June.
    7. Prabhashi W. Withana Gamage & Christopher S. McMahan & Lianming Wang, 2023. "A flexible parametric approach for analyzing arbitrarily censored data that are potentially subject to left truncation under the proportional hazards model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 188-212, January.
    8. Du, Mingyue & Zhao, Xingqiu, 2024. "A conditional approach for regression analysis of case K interval-censored failure time data with informative censoring," Computational Statistics & Data Analysis, Elsevier, vol. 198(C).
    9. Tian Tian & Jianguo Sun, 2024. "Variable Selection for Nonlinear Covariate Effects with Interval-Censored Failure Time Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(1), pages 185-202, April.
    10. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    11. Yongxin Liu & Peng Zeng & Lu Lin, 2021. "Degrees of freedom for regularized regression with Huber loss and linear constraints," Statistical Papers, Springer, vol. 62(5), pages 2383-2405, October.
    12. Shuying Wang & Chunjie Wang & Jianguo Sun, 2021. "An additive hazards cure model with informative interval censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 244-268, April.
    13. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    14. Ouafae Benrabah & Feriel Bouhadjera & Elias Ould Saïd, 2022. "Local linear estimation of the regression function for twice censored data," Statistical Papers, Springer, vol. 63(2), pages 489-514, April.
    15. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    16. Hu, Qinqin & Zeng, Peng & Lin, Lu, 2015. "The dual and degrees of freedom of linearly constrained generalized lasso," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 13-26.
    17. Peng Zeng & Qinqin Hu & Xiaoyu Li, 2017. "Geometry and Degrees of Freedom of Linearly Constrained Generalized Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 989-1008, December.
    18. Ruiwen Zhou & Huiqiong Li & Jianguo Sun & Niansheng Tang, 2022. "A new approach to estimation of the proportional hazards model based on interval-censored data with missing covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 335-355, July.
    19. Perrot-Dockès, Marie & Lévy-Leduc, Céline & Sansonnet, Laure & Chiquet, Julien, 2018. "Variable selection in multivariate linear models with high-dimensional covariance matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 78-97.
    20. Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:31:y:2025:i:3:d:10.1007_s10985-025-09655-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.