IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v38y2025i2d10.1007_s10959-025-01409-w.html
   My bibliography  Save this article

Harnack Inequalities for Mean-Field G-Stochastic Differential Equations with Multiplicative Noise

Author

Listed:
  • Xiyuan Su

    (Shanghai University
    Shanghai University)

  • Menglin Xu

    (Shanghai University
    Shanghai University)

  • Fen-Fen Yang

    (Shanghai University
    Shanghai University)

Abstract

In this paper, we investigate the existence and uniqueness of the solution for mean-field stochastic differential equations (SDEs) with multiplicative noise starting from a random variable under the G-framework by using Banach’s fixed-point theorem. Moreover, Harnack and log-Harnack inequalities are established by means of coupling by change of measures.

Suggested Citation

  • Xiyuan Su & Menglin Xu & Fen-Fen Yang, 2025. "Harnack Inequalities for Mean-Field G-Stochastic Differential Equations with Multiplicative Noise," Journal of Theoretical Probability, Springer, vol. 38(2), pages 1-29, June.
  • Handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01409-w
    DOI: 10.1007/s10959-025-01409-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-025-01409-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-025-01409-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Fuqing, 2009. "Pathwise properties and homeomorphic flows for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3356-3382, October.
    2. Wang, Feng-Yu, 2018. "Distribution dependent SDEs for Landau type equations," Stochastic Processes and their Applications, Elsevier, vol. 128(2), pages 595-621.
    3. Hu, Mingshang & Ji, Shaolin & Peng, Shige & Song, Yongsheng, 2014. "Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1170-1195.
    4. Liu, Guomin, 2020. "Exit times for semimartingales under nonlinear expectation," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7338-7362.
    5. Osuka, Emi, 2013. "Girsanov’s formula for G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1301-1318.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Mingshang & Wang, Falei, 2021. "Probabilistic approach to singular perturbations of viscosity solutions to nonlinear parabolic PDEs," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 139-171.
    2. Zhang, Wei & Jiang, Long, 2021. "Solutions of BSDEs with a kind of non-Lipschitz coefficients driven by G-Brownian motion," Statistics & Probability Letters, Elsevier, vol. 171(C).
    3. Hu, Ying & Tang, Shanjian & Wang, Falei, 2022. "Quadratic G-BSDEs with convex generators and unbounded terminal conditions," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 363-390.
    4. Akhtari, Bahar & Biagini, Francesca & Mazzon, Andrea & Oberpriller, Katharina, 2023. "Generalized Feynman–Kac formula under volatility uncertainty," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    5. Hu, Mingshang & Ji, Xiaojun & Liu, Guomin, 2021. "On the strong Markov property for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 417-453.
    6. Erhan Bayraktar & Alexander Munk, 2014. "Comparing the $G$-Normal Distribution to its Classical Counterpart," Papers 1407.5139, arXiv.org, revised Dec 2014.
    7. Biagini, Francesca & Mancin, Jacopo & Brandis, Thilo Meyer, 2019. "Robust mean–variance hedging via G-expectation," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1287-1325.
    8. Hu, Ying & Lin, Yiqing & Soumana Hima, Abdoulaye, 2018. "Quadratic backward stochastic differential equations driven by G-Brownian motion: Discrete solutions and approximation," Stochastic Processes and their Applications, Elsevier, vol. 128(11), pages 3724-3750.
    9. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    10. Francesca Biagini & Jacopo Mancin & Thilo Meyer Brandis, 2016. "Robust Mean-Variance Hedging via G-Expectation," Papers 1602.05484, arXiv.org, revised Aug 2016.
    11. Erhan Bayraktar & Alexander Munk, 2014. "An $\alpha$-stable limit theorem under sublinear expectation," Papers 1409.7960, arXiv.org, revised Jun 2016.
    12. He, Wei, 2024. "Multi-dimensional mean-reflected BSDEs driven by G-Brownian motion with time-varying non-Lipschitz coefficients," Statistics & Probability Letters, Elsevier, vol. 206(C).
    13. Wang, Bingjun & Yuan, Mingxia, 2019. "Forward-backward stochastic differential equations driven by G-Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 39-47.
    14. Ibrahim Dakaou & Abdoulaye Soumana Hima, 2021. "Large Deviations for Backward Stochastic Differential Equations Driven by G-Brownian Motion," Journal of Theoretical Probability, Springer, vol. 34(2), pages 499-521, June.
    15. Guomin Liu, 2021. "Girsanov Theorem for G-Brownian Motion: The Degenerate Case," Journal of Theoretical Probability, Springer, vol. 34(1), pages 125-140, March.
    16. Shengqiu Sun, 2022. "Backward Stochastic Differential Equations Driven by G-Brownian Motion with Uniformly Continuous Coefficients in (y, z)," Journal of Theoretical Probability, Springer, vol. 35(1), pages 370-409, March.
    17. Bingjun Wang & Hongjun Gao & Mingxia Yuan & Qingkun Xiao, 2024. "Reflected Backward Stochastic Differential Equations Driven by G-Brownian Motion Under Monotonicity Condition," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1902-1926, June.
    18. Hölzermann, Julian & Lin, Qian, 2019. "Term Structure Modeling under Volatility Uncertainty: A Forward Rate Model driven by G-Brownian Motion," Center for Mathematical Economics Working Papers 613, Center for Mathematical Economics, Bielefeld University.
    19. Gao, Fuqing & Jiang, Hui, 2010. "Large deviations for stochastic differential equations driven by G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 120(11), pages 2212-2240, November.
    20. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:38:y:2025:i:2:d:10.1007_s10959-025-01409-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.