IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01367-9.html
   My bibliography  Save this article

Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise

Author

Listed:
  • Zhe Pu

    (Southwest Jiaotong University)

  • Jianxiu Guo

    (Southwest Jiaotong University)

  • Dingshi Li

    (Southwest Jiaotong University)

Abstract

This article is concerned with the limiting behavior of invariant measures for stochastic reaction–diffusion equations driven by nonlinear noise on unbounded thin domains. We first show the existence of invariant measures when the diffusion terms are globally Lipschitz continuous. The uniform estimates on the tails of solutions are employed to present the tightness of a family of probability distributions of solutions in order to overcome the non-compactness of usual Sobolev embeddings on unbounded domains. Then, we prove any limit of invariant measures of the equations defined on $$(n+1)$$ ( n + 1 ) -dimensional unbounded thin domains must be an invariant measure of the limiting system as the thin domains collapse onto the space $$\mathbb {R}^n$$ R n .

Suggested Citation

  • Zhe Pu & Jianxiu Guo & Dingshi Li, 2024. "Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3781-3802, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01367-9
    DOI: 10.1007/s10959-024-01367-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01367-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01367-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01367-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.