IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i4d10.1007_s10959-024-01355-z.html
   My bibliography  Save this article

On the Generalized Birth–Death Process and Its Linear Versions

Author

Listed:
  • P. Vishwakarma

    (Indian Institute of Technology Bhilai)

  • K. K. Kataria

    (Indian Institute of Technology Bhilai)

Abstract

In this paper, we consider a generalized birth–death process (GBDP) and examine its linear versions. Using its transition probabilities, we obtain the system of differential equations that governs its state probabilities. The distribution function of its waiting time in state s given that it starts in state s is obtained. For a linear version of it, namely the generalized linear birth–death process (GLBDP), we obtain the probability generating function, mean, variance and the probability of ultimate extinction of population. Also, we obtain the maximum likelihood estimate of its parameters. The differential equations that govern the joint cumulant generating functions of the population size with cumulative births and cumulative deaths are derived. In the case of constant birth and death rates in GBDP, the explicit forms of the state probabilities, joint probability mass functions of population size with cumulative births and cumulative deaths, and their marginal probability mass functions are obtained. It is shown that the Laplace transform of an integral of GBDP satisfies its Kolmogorov backward equation with certain scaled parameters. The first two moments of the path integral of GLBDP are obtained. Also, we consider the immigration effect in GLBDP for two different cases. An application of a linear version of GBDP and its path integral to a vehicles parking management system is discussed. Later, we introduce a time-changed version of the GBDP where time is changed via an inverse stable subordinator. We show that its state probabilities are governed by a system of fractional differential equations.

Suggested Citation

  • P. Vishwakarma & K. K. Kataria, 2024. "On the Generalized Birth–Death Process and Its Linear Versions," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3540-3580, November.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01355-z
    DOI: 10.1007/s10959-024-01355-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-024-01355-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-024-01355-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:4:d:10.1007_s10959-024-01355-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.