IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i2d10.1007_s10959-023-01273-6.html
   My bibliography  Save this article

Convergence of Martingales with Jumps on Submanifolds of Euclidean Spaces and its Applications to Harmonic Maps

Author

Listed:
  • Fumiya Okazaki

    (Tohoku University)

Abstract

Martingales with jumps on Riemannian manifolds and harmonic maps with respect to Markov processes are discussed in this paper. Discontinuous martingales on manifolds were introduced in Picard (Séminaire de Probabilités de Strasbourg 25:196–219, 1991). We obtain results about the convergence of martingales with finite quadratic variations on Riemannian submanifolds of higher-dimensional Euclidean space as $$t\rightarrow \infty $$ t → ∞ and as $$t\rightarrow 0$$ t → 0 . Furthermore, we apply the result about martingales with jumps on submanifolds to harmonic maps with respect to Markov processes such as fractional harmonic maps.

Suggested Citation

  • Fumiya Okazaki, 2024. "Convergence of Martingales with Jumps on Submanifolds of Euclidean Spaces and its Applications to Harmonic Maps," Journal of Theoretical Probability, Springer, vol. 37(2), pages 1168-1198, June.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01273-6
    DOI: 10.1007/s10959-023-01273-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01273-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01273-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:2:d:10.1007_s10959-023-01273-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.