IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v32y2019i3d10.1007_s10959-018-0822-4.html
   My bibliography  Save this article

Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises

Author

Listed:
  • Xiliang Fan

    (Anhui Normal University)

Abstract

For degenerate stochastic differential equations driven by fractional Brownian motions with Hurst parameter $$H>1/2$$ H > 1 / 2 , the derivative formulas are established by using Malliavin calculus and coupling method, respectively. Furthermore, we find some relation between these two approaches. As applications, the (log) Harnack inequalities and the hyperbounded property are presented.

Suggested Citation

  • Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
  • Handle: RePEc:spr:jotpro:v:32:y:2019:i:3:d:10.1007_s10959-018-0822-4
    DOI: 10.1007/s10959-018-0822-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-018-0822-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-018-0822-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    2. Zhang, Xicheng, 2010. "Stochastic flows and Bismut formulas for stochastic Hamiltonian systems," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 1929-1949, September.
    3. Arnaudon, Marc & Thalmaier, Anton & Wang, Feng-Yu, 2009. "Gradient estimates and Harnack inequalities on non-compact Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3653-3670, October.
    4. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    5. Bruno Saussereau, 2012. "A Stability Result for Stochastic Differential Equations Driven by Fractional Brownian Motions," International Journal of Stochastic Analysis, Hindawi, vol. 2012, pages 1-13, December.
    6. Jaramillo, Arturo & Nualart, David, 2017. "Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 669-700.
    7. Baudoin, Fabrice & Ouyang, Cheng, 2011. "Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 759-792, April.
    8. Nourdin, Ivan & Simon, Thomas, 2006. "On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 907-912, May.
    9. Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    2. Nourdin, Ivan & Peccati, Giovanni & Viens, Frederi G., 2014. "Comparison inequalities on Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1566-1581.
    3. Baudoin, Fabrice & Ouyang, Cheng & Zhang, Xuejing, 2015. "Varadhan estimates for rough differential equations driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 634-652.
    4. Yamada, Toshihiro, 2015. "A formula of small time expansion for Young SDE driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 64-72.
    5. Boufoussi, Brahim & Hajji, Salah, 2012. "Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1549-1558.
    6. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    7. Bao, Jianhai & Wang, Feng-Yu & Yuan, Chenggui, 2019. "Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory," Stochastic Processes and their Applications, Elsevier, vol. 129(11), pages 4576-4596.
    8. Eric Djeutcha & Didier Alain Njamen Njomen & Louis-Aimé Fono, 2019. "Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 76-92, February.
    9. Shevchenko, Georgiy & Shalaiko, Taras, 2013. "Malliavin regularity of solutions to mixed stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2638-2646.
    10. Feng-Yu Wang, 2014. "Derivative Formula and Gradient Estimates for Gruschin Type Semigroups," Journal of Theoretical Probability, Springer, vol. 27(1), pages 80-95, March.
    11. Wujun Lv & Xing Huang, 2021. "Harnack and Shift Harnack Inequalities for Degenerate (Functional) Stochastic Partial Differential Equations with Singular Drifts," Journal of Theoretical Probability, Springer, vol. 34(2), pages 827-851, June.
    12. Coffie, Emmanuel & Duedahl, Sindre & Proske, Frank, 2023. "Sensitivity analysis with respect to a stochastic stock price model with rough volatility via a Bismut–Elworthy–Li formula for singular SDEs," Stochastic Processes and their Applications, Elsevier, vol. 156(C), pages 156-195.
    13. Quer-Sardanyons, Lluís & Tindel, Samy, 2012. "Pathwise definition of second-order SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 466-497.
    14. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    15. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    16. Pilipenko, Andrey & Proske, Frank Norbert, 2018. "On perturbations of an ODE with non-Lipschitz coefficients by a small self-similar noise," Statistics & Probability Letters, Elsevier, vol. 132(C), pages 62-73.
    17. Jan Gairing & Peter Imkeller & Radomyra Shevchenko & Ciprian Tudor, 2020. "Hurst Index Estimation in Stochastic Differential Equations Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1691-1714, September.
    18. Li, Xiang-Dong, 2016. "Hamilton’s Harnack inequality and the W-entropy formula on complete Riemannian manifolds," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1264-1283.
    19. Uda, Kenneth, 2021. "Averaging principle for stochastic differential equations in the random periodic regime," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 1-36.
    20. David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:32:y:2019:i:3:d:10.1007_s10959-018-0822-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.