IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v207y2025i1d10.1007_s10957-025-02778-2.html
   My bibliography  Save this article

A Relaxed Alternating Direction Method Of Multipliers For Separable Nonconvex Minimization Problems

Author

Listed:
  • Jing Zhao

    (Civil Aviation University of China)

  • Chenzheng Guo

    (Xidian University)

  • Xiaolong Qin

    (Hangzhou Normal University
    Academy of Romanian Scientists)

Abstract

The alternating direction method of multipliers (ADMM) is popular and powerful in computing the solutions of various composite minimization problems with constraints. In this paper, we propose a relaxed ADMM with a general dual step-size, which includes the classic ADMM in the algorithm framework, for minimizing separable nonconvex functions with linear constraints. Under some assumptions on the penalty parameter and the objective function, the convergence of the proposed algorithm is obtained based on the Kurdyka–Łojasiewicz property. Moreover, we report some preliminary numerical results on involving matrix decomposition problem to demonstrate the feasibility and effectiveness of the proposed method.

Suggested Citation

  • Jing Zhao & Chenzheng Guo & Xiaolong Qin, 2025. "A Relaxed Alternating Direction Method Of Multipliers For Separable Nonconvex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 207(1), pages 1-29, October.
  • Handle: RePEc:spr:joptap:v:207:y:2025:i:1:d:10.1007_s10957-025-02778-2
    DOI: 10.1007/s10957-025-02778-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02778-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02778-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Zhongming Wu & Min Li & David Z. W. Wang & Deren Han, 2017. "A Symmetric Alternating Direction Method of Multipliers for Separable Nonconvex Minimization Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(06), pages 1-27, December.
    3. Miantao Chao & Yongxin Zhao & Dongying Liang, 2020. "A Proximal Alternating Direction Method of Multipliers with a Substitution Procedure," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-12, April.
    4. Danqing Zhou & Haiwen Xu & Junfeng Yang, 2024. "Proximal Alternating Direction Method of Multipliers with Convex Combination Proximal Centers," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 41(03), pages 1-28, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhao & Qiao-Li Dong & Michael Th. Rassias & Fenghui Wang, 2022. "Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems," Journal of Global Optimization, Springer, vol. 84(4), pages 941-966, December.
    2. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    3. Xiaoquan Wang & Hu Shao & Ting Wu, 2025. "A convex combined symmetric alternating direction method of multipliers for separable optimization," Computational Optimization and Applications, Springer, vol. 90(3), pages 839-880, April.
    4. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    5. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    6. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    7. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    8. Peixuan Li & Yuan Shen & Suhong Jiang & Zehua Liu & Caihua Chen, 2021. "Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms," Computational Optimization and Applications, Springer, vol. 78(1), pages 87-124, January.
    9. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.
    10. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    11. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    12. Bolte, Jérôme & Le, Tam & Pauwels, Edouard & Silveti-Falls, Antonio, 2022. "Nonsmooth Implicit Differentiation for Machine Learning and Optimization," TSE Working Papers 22-1314, Toulouse School of Economics (TSE).
    13. Kai Tu & Haibin Zhang & Huan Gao & Junkai Feng, 2020. "A hybrid Bregman alternating direction method of multipliers for the linearly constrained difference-of-convex problems," Journal of Global Optimization, Springer, vol. 76(4), pages 665-693, April.
    14. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    15. Alexander Y. Kruger & Nguyen H. Thao, 2015. "Quantitative Characterizations of Regularity Properties of Collections of Sets," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 41-67, January.
    16. Fornasier, Massimo & Maly, Johannes & Naumova, Valeriya, 2021. "Robust recovery of low-rank matrices with non-orthogonal sparse decomposition from incomplete measurements," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    17. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    18. W. Ackooij & S. Demassey & P. Javal & H. Morais & W. Oliveira & B. Swaminathan, 2021. "A bundle method for nonsmooth DC programming with application to chance-constrained problems," Computational Optimization and Applications, Springer, vol. 78(2), pages 451-490, March.
    19. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    20. Jérôme Bolte & Edouard Pauwels, 2016. "Majorization-Minimization Procedures and Convergence of SQP Methods for Semi-Algebraic and Tame Programs," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 442-465, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:207:y:2025:i:1:d:10.1007_s10957-025-02778-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.