IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i3d10.1007_s10957-025-02717-1.html
   My bibliography  Save this article

The Existence and Uniqueness of Solution of the Vertical Tensor Complementarity Problem

Author

Listed:
  • Dan Wang

    (Xi’an Jiaotong University)

  • Jicheng Li

    (Xi’an Jiaotong University)

Abstract

For the vertical tensor complementarity problems (VTCPs) and generalized order polynomial complementarity problems (GOPCPs), we make contributions to analyzing some properties of solutions. We propose some types of block tensors mainly based on ER-tensor and P-function, respectively, and use these block tensors to investigate existence and uniqueness of solution of the VTCPs. We also propose conditions for the existence of solution to the VTCPs when all involved tensors are nonnegative. Under mild conditions, the boundeness of the solution set and uniqueness of the solution of the GOPCPs are discussed.

Suggested Citation

  • Dan Wang & Jicheng Li, 2025. "The Existence and Uniqueness of Solution of the Vertical Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 206(3), pages 1-23, September.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02717-1
    DOI: 10.1007/s10957-025-02717-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02717-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02717-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. M. Seetharama Gowda & Jong-Shi Pang, 1992. "On Solution Stability of the Linear Complementarity Problem," Mathematics of Operations Research, INFORMS, vol. 17(1), pages 77-83, February.
    2. Xue-Li Bai & Zheng-Hai Huang & Yong Wang, 2016. "Global Uniqueness and Solvability for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 72-84, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    2. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    3. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    4. Sonali Sharma & Vellaichamy Vetrivel, 2025. "Extended Horizontal Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 207(3), pages 1-24, December.
    5. K. Palpandi & Sonali Sharma, 2021. "Tensor Complementarity Problems with Finite Solution Sets," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 951-965, September.
    6. Xue-liu Li & Yi-rong Jiang & Yuning Yang & Guo-ji Tang, 2025. "Extended vertical tensor complementarity problems with finite solution sets," Journal of Global Optimization, Springer, vol. 92(2), pages 431-452, June.
    7. Vu Trung Hieu, 2020. "Solution maps of polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 77(4), pages 807-824, August.
    8. Xueli Bai & Mengmeng Zheng & Zheng-Hai Huang, 2021. "Unique solvability of weakly homogeneous generalized variational inequalities," Journal of Global Optimization, Springer, vol. 80(4), pages 921-943, August.
    9. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    10. Yong Wang & Zheng-Hai Huang & Liqun Qi, 2018. "Global Uniqueness and Solvability of Tensor Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 137-152, April.
    11. Vu Trung Hieu, 2019. "On the R0-Tensors and the Solution Map of Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 163-183, April.
    12. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    13. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    14. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    15. Xue-liu Li & Guo-ji Tang, 2024. "The Bounds of Solutions to Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2560-2591, December.
    16. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    17. Karan N. Chadha & Ankur A. Kulkarni, 2022. "On independent cliques and linear complementarity problems," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(4), pages 1036-1057, December.
    18. Hoang Ngoc Tuan, 2015. "Boundedness of a Type of Iterative Sequences in Two-Dimensional Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 234-245, January.
    19. Parthasarathy T & Ravindran G & Sunil Kumar, 2025. "On Q-tensors," Journal of Optimization Theory and Applications, Springer, vol. 207(2), pages 1-13, November.
    20. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:3:d:10.1007_s10957-025-02717-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.