IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02731-3.html
   My bibliography  Save this article

Global Convergence of a Second-order Augmented Lagrangian Method Under an Error Bound Condition

Author

Listed:
  • Roberto Andreani

    (University of Campinas)

  • Gabriel Haeser

    (University of São Paulo)

  • Renan William Prado

    (University of São Paulo)

  • Maria L. Schuverdt

    (National University of La Plata)

  • Leonardo D. Secchin

    (Federal University of Espírito Santo)

Abstract

This work deals with convergence to points satisfying the weak second-order necessary optimality conditions of a second-order safeguarded augmented Lagrangian method from the literature. To this end, we propose a new second-order sequential optimality condition that is, in a certain way, based on the iterates generated by the algorithm itself. This also allows us to establish the best possible global convergence result for the method studied, from which a companion constraint qualification is derived. The companion constraint qualification is independent of the Mangasarian-Fromovitz and constant-rank constraint qualifications and remains verifiable without them, as it can be certified by other known constraint qualifications. Furthermore, unlike similar results from previous works, the new constraint qualification cannot be weakened by another one with second-order global convergence guarantees for the method and assures second-order stationarity without the need for constant rank hypotheses. To guarantee the latter result, we established the convergence of the method under a property slightly stronger than the error bound constraint qualification, which, until now, has not been known to be associated with nonlinear optimization methods.

Suggested Citation

  • Roberto Andreani & Gabriel Haeser & Renan William Prado & Maria L. Schuverdt & Leonardo D. Secchin, 2025. "Global Convergence of a Second-order Augmented Lagrangian Method Under an Error Bound Condition," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-30, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02731-3
    DOI: 10.1007/s10957-025-02731-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02731-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02731-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Minchenko & A. Tarakanov, 2011. "On Error Bounds for Quasinormal Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 571-579, March.
    2. J. J. Ye, 1998. "New Uniform Parametric Error Bounds," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 197-219, July.
    3. R. Andreani & C. E. Echagüe & M. L. Schuverdt, 2010. "Constant-Rank Condition and Second-Order Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 255-266, August.
    4. Gabriel Haeser, 2018. "A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms," Computational Optimization and Applications, Springer, vol. 70(2), pages 615-639, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuang Bai & Yixia Song & Jin Zhang, 2023. "Second-Order Enhanced Optimality Conditions and Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 1264-1284, September.
    2. Iasson Karafyllis, 2014. "Feedback Stabilization Methods for the Solution of Nonlinear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 161(3), pages 783-806, June.
    3. Kaiwen Meng & Xiaoqi Yang, 2015. "First- and Second-Order Necessary Conditions Via Exact Penalty Functions," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 720-752, June.
    4. Jean C. A. Medeiros & Ademir A. Ribeiro & Mael Sachine & Leonardo D. Secchin, 2025. "A Practical Second-Order Optimality Condition for Cardinality-Constrained Problems with Application to an Augmented Lagrangian Method," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-25, August.
    5. Renan W. Prado & Sandra A. Santos & Lucas E. A. Simões, 2023. "On the Fulfillment of the Complementary Approximate Karush–Kuhn–Tucker Conditions and Algorithmic Applications," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 705-736, May.
    6. Vsevolod I. Ivanov, 2015. "Second-Order Optimality Conditions for Vector Problems with Continuously Fréchet Differentiable Data and Second-Order Constraint Qualifications," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 777-790, September.
    7. Lei Guo & Gui-Hua Lin & Jane J. Ye, 2013. "Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 158(1), pages 33-64, July.
    8. Giorgio Giorgi, 2018. "A Guided Tour in Constraint Qualifications for Nonlinear Programming under Differentiability Assumptions," DEM Working Papers Series 160, University of Pavia, Department of Economics and Management.
    9. R. Andreani & E. H. Fukuda & G. Haeser & D. O. Santos & L. D. Secchin, 2021. "On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming," Computational Optimization and Applications, Springer, vol. 79(3), pages 633-648, July.
    10. Roberto Andreani & Gabriel Haeser & Leonardo M. Mito & C. Héctor Ramírez & Thiago P. Silveira, 2022. "Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 42-78, October.
    11. María C. Maciel & Sandra A. Santos & Graciela N. Sottosanto, 2011. "On Second-Order Optimality Conditions for Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 149(2), pages 332-351, May.
    12. Giorgio Giorgi, 2019. "Notes on Constraint Qualifications for Second-Order Optimality Conditions," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(5), pages 16-32, October.
    13. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    14. Stephan Dempe & Alain B. Zemkoho, 2011. "The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 46-68, January.
    15. S. Dempe & A. Zemkoho, 2012. "Bilevel road pricing: theoretical analysis and optimality conditions," Annals of Operations Research, Springer, vol. 196(1), pages 223-240, July.
    16. Roger Behling & Gabriel Haeser & Alberto Ramos & Daiana S. Viana, 2018. "On a Conjecture in Second-Order Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 625-633, March.
    17. Joydeep Dutta & Lahoussine Lafhim & Alain Zemkoho & Shenglong Zhou, 2025. "Nonconvex Quasi-Variational Inequalities: Stability Analysis and Application to Numerical Optimization," Journal of Optimization Theory and Applications, Springer, vol. 204(2), pages 1-43, February.
    18. Roberto Andreani & Ellen H. Fukuda & Gabriel Haeser & Daiana O. Santos & Leonardo D. Secchin, 2024. "Optimality Conditions for Nonlinear Second-Order Cone Programming and Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 1-33, January.
    19. Lei Guo & Jin Zhang & Gui-Hua Lin, 2014. "New Results on Constraint Qualifications for Nonlinear Extremum Problems and Extensions," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 737-754, December.
    20. Min Feng & Shengjie Li, 2019. "Second-Order Strong Karush/Kuhn–Tucker Conditions for Proper Efficiencies in Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 766-786, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02731-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.