IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v206y2025i2d10.1007_s10957-025-02722-4.html
   My bibliography  Save this article

Characterization of Generalized FJ and KKT Conditions for Robust Optimization

Author

Listed:
  • Javad Koushki

    (K.N. Toosi University of Technology)

  • Shokouh Shahbeyk

    (Allameh Tabataba’i University)

Abstract

In this paper, we deal with the generalized Fritz-John (FJ) and Karush-Kuhn-Tucker (KKT) optimality conditions defined by Flores-Bazan and Mastroeni for a nonsmooth nonconvex mathematical programming problem in the face of data uncertainty under the robust counterpart. These uncertainties are included in the objective and the constraints. We first provide definitions for the FJ and KKT conditions in this case, then prove alternative-theorems to characterize these definitions. The constraint qualification used in this paper is similar to those in specific case. Our results cover the outcomes of two previous studies: [Flores-Bazan and Mastroeni’s “Characterizing FJ and KKT conditions in nonconvex mathematical programming with applications” (SIAM J. Optim. 25 (2015) 647-676)] and [Koushki and Soleimani-damaneh’s “Characterization of generalized FJ and KKT conditions in nonsmooth nonconvex optimization” (J. Glob. Optim. 76 (2020) 407-431)] as well as the classic case in the literature.

Suggested Citation

  • Javad Koushki & Shokouh Shahbeyk, 2025. "Characterization of Generalized FJ and KKT Conditions for Robust Optimization," Journal of Optimization Theory and Applications, Springer, vol. 206(2), pages 1-23, August.
  • Handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02722-4
    DOI: 10.1007/s10957-025-02722-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02722-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02722-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:206:y:2025:i:2:d:10.1007_s10957-025-02722-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.