IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v205y2025i3d10.1007_s10957-025-02654-z.html
   My bibliography  Save this article

Novel Constructions for Closed Convex Cones Through Inequalities and Support Functions

Author

Listed:
  • Ching-Yu Yang

    (National Taiwan Normal University)

  • Yu-Lin Chang

    (National Taiwan Normal University)

  • Chu-Chin Hu

    (National Taiwan Normal University)

  • Jein-Shan Chen

    (National Taiwan Normal University)

Abstract

Two novel ways to generate closed convex cones, the main ingredient of conic optimization, are proposed in this study. The first way is constructing closed convex cones via inequalities, whereas the second one is through support functions. The contribution of this article is twofold. One is opening up new ideas for looking into structures of closed convex cones. The other one is providing novel approaches and mediums for investigating conic optimization.

Suggested Citation

  • Ching-Yu Yang & Yu-Lin Chang & Chu-Chin Hu & Jein-Shan Chen, 2025. "Novel Constructions for Closed Convex Cones Through Inequalities and Support Functions," Journal of Optimization Theory and Applications, Springer, vol. 205(3), pages 1-34, June.
  • Handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02654-z
    DOI: 10.1007/s10957-025-02654-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-025-02654-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-025-02654-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Németh & G. Zhang, 2015. "Extended Lorentz cones and mixed complementarity problems," Journal of Global Optimization, Springer, vol. 62(3), pages 443-457, July.
    2. Jein-Shan Chen, 2007. "On Some Ncp-Functions Based On The Generalized Fischer–Burmeister Function," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 24(03), pages 401-420.
    3. O. P. Ferreira & S. Z. Németh, 2018. "How to project onto extended second order cones," Journal of Global Optimization, Springer, vol. 70(4), pages 707-718, April.
    4. Sándor Zoltán Németh & Guohan Zhang, 2016. "Extended Lorentz Cones and Variational Inequalities on Cylinders," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 756-768, March.
    5. Sándor Zoltán Németh & Lianghai Xiao, 2018. "Linear Complementarity Problems on Extended Second Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 269-288, February.
    6. Le Hien, 2015. "Differential properties of Euclidean projection onto power cone," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(3), pages 265-284, December.
    7. François Glineur, 2001. "Proving Strong Duality for Geometric Optimization Using a Conic Formulation," Annals of Operations Research, Springer, vol. 105(1), pages 155-184, July.
    8. Yingchao Gao & Sándor Zoltán Németh & Roman Sznajder, 2022. "The Monotone Extended Second-Order Cone and Mixed Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 381-407, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingchao Gao & Sándor Zoltán Németh & Roman Sznajder, 2022. "The Monotone Extended Second-Order Cone and Mixed Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 381-407, June.
    2. O. P. Ferreira & S. Z. Németh, 2018. "How to project onto extended second order cones," Journal of Global Optimization, Springer, vol. 70(4), pages 707-718, April.
    3. Dezhou Kong & Lishan Liu & Yonghong Wu, 2020. "Isotonicity of Proximity Operators in General Quasi-Lattices and Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 88-104, October.
    4. Yue Lu & Ching-Yu Yang & Jein-Shan Chen & Hou-Duo Qi, 2020. "The decompositions with respect to two core non-symmetric cones," Journal of Global Optimization, Springer, vol. 76(1), pages 155-188, January.
    5. Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection and Complementarity Problems in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 341-355, November.
    6. Sándor Zoltán Németh & Lianghai Xiao, 2018. "Linear Complementarity Problems on Extended Second Order Cones," Journal of Optimization Theory and Applications, Springer, vol. 176(2), pages 269-288, February.
    7. Robert Chares & François Glineur, 2008. "An interior-point method for the single-facility location problem with mixed norms using a conic formulation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(3), pages 383-405, December.
    8. Baha Alzalg & Lilia Benakkouche, 2024. "The Nonconvex Second-Order Cone: Algebraic Structure Toward Optimization," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 631-667, May.
    9. Dezhou Kong & Lishan Liu & Yonghong Wu, 2017. "Isotonicity of the Metric Projection by Lorentz Cone and Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 117-130, April.
    10. Roman Sznajder, 2016. "The Lyapunov rank of extended second order cones," Journal of Global Optimization, Springer, vol. 66(3), pages 585-593, November.
    11. Sándor Zoltán Németh & Guohan Zhang, 2016. "Extended Lorentz Cones and Variational Inequalities on Cylinders," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 756-768, March.
    12. F. Glineur & T. Terlaky, 2004. "Conic Formulation for l p -Norm Optimization," Journal of Optimization Theory and Applications, Springer, vol. 122(2), pages 285-307, August.
    13. Qinghong Zhang & Kenneth O. Kortanek, 2019. "On a Compound Duality Classification for Geometric Programming," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 711-728, March.
    14. Zhang, Xu & Peng, Zheng, 2020. "A modulus-based nonmonotone line search method for nonlinear complementarity problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:205:y:2025:i:3:d:10.1007_s10957-025-02654-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.