IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v200y2024i3d10.1007_s10957-024-02386-6.html
   My bibliography  Save this article

On the Relationship Between the Kurdyka–Łojasiewicz Property and Error Bounds on Hadamard Manifolds

Author

Listed:
  • João Xavier Cruz Neto

    (Federal University of Piauí)

  • Ítalo Dowell Lira Melo

    (Federal University of Piauí)

  • Paulo Alexandre Sousa

    (Federal University of Piauí)

  • João Carlos Oliveira Souza

    (Federal University of Piauí)

Abstract

This paper studies the interplay between the concepts of error bounds and the Kurdyka–Łojasiewicz (KL) inequality on Hadamard manifolds. To this end, we extend some properties and existence results of a solution for differential inclusions on Hadamard manifolds. As a second contribution, we show how the KL inequality can be used to obtain the convergence of the gradient method for solving convex feasibility problems on Hadamard manifolds. The convergence results of the alternating projection method are also established for cyclic and random projections on Hadamard manifolds and, more generally, CAT(0) spaces.

Suggested Citation

  • João Xavier Cruz Neto & Ítalo Dowell Lira Melo & Paulo Alexandre Sousa & João Carlos Oliveira Souza, 2024. "On the Relationship Between the Kurdyka–Łojasiewicz Property and Error Bounds on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 200(3), pages 1255-1285, March.
  • Handle: RePEc:spr:joptap:v:200:y:2024:i:3:d:10.1007_s10957-024-02386-6
    DOI: 10.1007/s10957-024-02386-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02386-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02386-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. David G. Luenberger, 1972. "The Gradient Projection Method Along Geodesics," Management Science, INFORMS, vol. 18(11), pages 620-631, July.
    2. Glaydston C. Bento & Jefferson G. Melo, 2012. "Subgradient Method for Convex Feasibility on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 152(3), pages 773-785, March.
    3. Xiangmei Wang & Chong Li & Jen-Chih Yao, 2016. "On Some Basic Results Related to Affine Functions on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 170(3), pages 783-803, September.
    4. Joao Xavier Cruz Neto & Paulo Roberto Oliveira & A. Soares Jr Pedro & Antoine Soubeyran, 2013. "Learning how to Play Nash, Potential Games and Alternating Minimization Method for Structured Nonconvex Problems on Riemannian Manifolds," Post-Print hal-01500875, HAL.
    5. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Glaydston C. Bento & Orizon P. Ferreira & Jefferson G. Melo, 2017. "Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 548-562, May.
    2. João Carlos de O. Souza, 2018. "Proximal Point Methods for Lipschitz Functions on Hadamard Manifolds: Scalar and Vectorial Cases," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 745-760, December.
    3. Glaydston Carvalho Bento & Sandro Dimy Barbosa Bitar & João Xavier Cruz Neto & Paulo Roberto Oliveira & João Carlos Oliveira Souza, 2019. "Computing Riemannian Center of Mass on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 977-992, December.
    4. Glaydston Carvalho Bento & João Xavier Cruz Neto & Paulo Roberto Oliveira, 2016. "A New Approach to the Proximal Point Method: Convergence on General Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 168(3), pages 743-755, March.
    5. Erik Alex Papa Quiroz, 2024. "Proximal Point Method for Quasiconvex Functions in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1268-1285, September.
    6. Dewei Zhang & Sam Davanloo Tajbakhsh, 2023. "Riemannian Stochastic Variance-Reduced Cubic Regularized Newton Method for Submanifold Optimization," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 324-361, January.
    7. Balendu Bhooshan Upadhyay & Arnav Ghosh, 2023. "On Constraint Qualifications for Mathematical Programming Problems with Vanishing Constraints on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 1-35, October.
    8. J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
    9. Glaydston Carvalho Bento & João Xavier Cruz Neto & Antoine Soubeyran & Valdinês Leite Sousa Júnior, 2016. "Dual Descent Methods as Tension Reduction Systems," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 209-227, October.
    10. Peng Zhang & Gejun Bao, 2018. "An Incremental Subgradient Method on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 176(3), pages 711-727, March.
    11. T. Q. Bao & B. S. Mordukhovich & A. Soubeyran, 2015. "Variational Analysis in Psychological Modeling," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 290-315, January.
    12. G. C. Bento & J. X. Cruz Neto & P. A. Soares & A. Soubeyran, 2022. "A new regularization of equilibrium problems on Hadamard manifolds: applications to theories of desires," Annals of Operations Research, Springer, vol. 316(2), pages 1301-1318, September.
    13. Jing Wang & Huafei Sun & Simone Fiori, 2019. "Empirical Means on Pseudo-Orthogonal Groups," Mathematics, MDPI, vol. 7(10), pages 1-20, October.
    14. Ítalo Dowell Lira Melo & João Xavier Cruz Neto & José Márcio Machado Brito, 2022. "Strong Convergence of Alternating Projections," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 306-324, July.
    15. X. M. Wang & C. Li & J. C. Yao, 2015. "Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 202-217, January.
    16. Erik Papa Quiroz & Antoine Soubeyran, 2024. "Local proximal algorithms in Riemannian manifolds: Application to the behavioral traveler's problem," Post-Print hal-04930974, HAL.
    17. Orizon P. Ferreira & Mauricio S. Louzeiro & Leandro F. Prudente, 2020. "Iteration-Complexity and Asymptotic Analysis of Steepest Descent Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 507-533, February.
    18. Fiori, Simone, 2016. "A Riemannian steepest descent approach over the inhomogeneous symplectic group: Application to the averaging of linear optical systems," Applied Mathematics and Computation, Elsevier, vol. 283(C), pages 251-264.
    19. G. C. Bento & J. X. Cruz Neto, 2013. "A Subgradient Method for Multiobjective Optimization on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 125-137, October.
    20. Hilal Ahmad Bhat & Akhlad Iqbal & Mahwash Aftab, 2025. "Optimality Conditions for Interval-Valued Optimization Problems on Riemannian Manifolds Under a Total Order Relation," Journal of Optimization Theory and Applications, Springer, vol. 205(1), pages 1-29, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:200:y:2024:i:3:d:10.1007_s10957-024-02386-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.