IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v184y2020i1d10.1007_s10957-019-01502-1.html
   My bibliography  Save this article

Biomimetic Approach to Compliance Optimization and Multiple Load Cases

Author

Listed:
  • Michał Nowak

    (Poznań University of Technology, Chair of Virtual Engineering)

  • Jan Sokołowski

    (Federal University of Paraiba
    Systems Research Institute of the Polish Academy of Sciences
    CNRS, INRIA, Institute Elie Cartan Nancy, UMR7502)

  • Antoni Żochowski

    (Systems Research Institute of the Polish Academy of Sciences)

Abstract

The variational approach to shape optimization in linearized elasticity is used in order to improve convergence of a known heuristic algorithm. The speed method of shape optimization is applied to obtain necessary optimality conditions for representative test examples. The algorithm originates from the biomimetic approach to compliance optimization. The trabecular bone adapts its form to mechanical loads and is able to form structures that are lightweight and very stiff at the same time. In this sense, it is a problem pertaining to both the nature or living entities which is similar to structural optimization, especially topology optimization. The paper presents the biomimetic approach, based on the trabecular bone remodeling phenomenon, with the aim of minimizing the compliance in multiple load cases. The method employed aims at minimizing the energy and combines structural evolution inspired by trabecular bone remodeling and the shape gradient framework, with strict analysis based on functionals in the 3-dimensional elasticity model. The method is enhanced to handle the problem of structural optimization under multiple loads. The new biomimetic approach does not require volume constraints. Instead of imposing volume constraints, shapes are parameterized by the assumed strain energy density on the structural surface. The stiffest design is obtained by adding or removing material on the structural surface in virtual space. Structural evolution is based on shape gradient approximation by the speed method, and it is separated from the finite element method of the model solution. Numerical examples confirm that the heuristic algorithm for structural optimization is efficient.

Suggested Citation

  • Michał Nowak & Jan Sokołowski & Antoni Żochowski, 2020. "Biomimetic Approach to Compliance Optimization and Multiple Load Cases," Journal of Optimization Theory and Applications, Springer, vol. 184(1), pages 210-225, January.
  • Handle: RePEc:spr:joptap:v:184:y:2020:i:1:d:10.1007_s10957-019-01502-1
    DOI: 10.1007/s10957-019-01502-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01502-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01502-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part II: First-Order Method and Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 683-710, March.
    2. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 1-22, April.
    3. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 341-373, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ada Amendola, 2020. "On the Optimal Prediction of the Stress Field Associated with Discrete Element Models," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 613-629, December.
    2. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part III: Second-Order Method and Applications," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 1-22, April.
    3. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part II: First-Order Method and Applications," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 683-710, March.
    4. Antonio André Novotny & Jan Sokołowski & Antoni Żochowski, 2019. "Topological Derivatives of Shape Functionals. Part I: Theory in Singularly Perturbed Geometrical Domains," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 341-373, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:184:y:2020:i:1:d:10.1007_s10957-019-01502-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.