IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i3d10.1007_s10957-019-01586-9.html
   My bibliography  Save this article

Local Convergence Analysis of the Levenberg–Marquardt Framework for Nonzero-Residue Nonlinear Least-Squares Problems Under an Error Bound Condition

Author

Listed:
  • Roger Behling

    (Fundação Getúlio Vargas)

  • Douglas S. Gonçalves

    (Federal University of Santa Catarina)

  • Sandra A. Santos

    (University of Campinas)

Abstract

The Levenberg–Marquardt method is widely used for solving nonlinear systems of equations, as well as nonlinear least-squares problems. In this paper, we consider local convergence properties of the method, when applied to nonzero-residue nonlinear least-squares problems under an error bound condition, which is weaker than requiring full rank of the Jacobian in a neighborhood of a stationary point. Differently from the zero-residue case, the choice of the Levenberg–Marquardt parameter is shown to be dictated by (i) the behavior of the rank of the Jacobian and (ii) a combined measure of nonlinearity and residue size in a neighborhood of the set of (possibly non-isolated) stationary points of the sum of squares function.

Suggested Citation

  • Roger Behling & Douglas S. Gonçalves & Sandra A. Santos, 2019. "Local Convergence Analysis of the Levenberg–Marquardt Framework for Nonzero-Residue Nonlinear Least-Squares Problems Under an Error Bound Condition," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1099-1122, December.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01586-9
    DOI: 10.1007/s10957-019-01586-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01586-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01586-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elizabeth W. Karas & Sandra A. Santos & Benar F. Svaiter, 2016. "Algebraic rules for computing the regularization parameter of the Levenberg–Marquardt method," Computational Optimization and Applications, Springer, vol. 65(3), pages 723-751, December.
    2. Stefania Bellavia & Elisa Riccietti, 2018. "On an Elliptical Trust-Region Procedure for Ill-Posed Nonlinear Least-Squares Problems," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 824-859, September.
    3. Jean-Baptiste Hiriart-Urruty & Hai Le, 2013. "A variational approach of the rank function," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 207-240, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Naoki Marumo & Takayuki Okuno & Akiko Takeda, 2023. "Majorization-minimization-based Levenberg–Marquardt method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 84(3), pages 833-874, April.
    2. Jianghua Yin & Jinbao Jian & Guodong Ma, 2024. "A modified inexact Levenberg–Marquardt method with the descent property for solving nonlinear equations," Computational Optimization and Applications, Springer, vol. 87(1), pages 289-322, January.
    3. Andreas Fischer & Alexey F. Izmailov & Mikhail V. Solodov, 2024. "The Levenberg–Marquardt method: an overview of modern convergence theories and more," Computational Optimization and Applications, Springer, vol. 89(1), pages 33-67, September.
    4. Boos, Everton & Gonçalves, Douglas S. & Bazán, Fermín S.V., 2024. "Levenberg-Marquardt method with singular scaling and applications," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    5. Reza Arefidamghani & Roger Behling & Yunier Bello-Cruz & Alfredo N. Iusem & Luiz-Rafael Santos, 2021. "The circumcentered-reflection method achieves better rates than alternating projections," Computational Optimization and Applications, Springer, vol. 79(2), pages 507-530, June.
    6. Nataša Krejić & Greta Malaspina & Lense Swaenen, 2023. "A split Levenberg-Marquardt method for large-scale sparse problems," Computational Optimization and Applications, Springer, vol. 85(1), pages 147-179, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Hoheisel & Elliot Paquette, 2023. "Uniqueness in Nuclear Norm Minimization: Flatness of the Nuclear Norm Sphere and Simultaneous Polarization," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 252-276, April.
    2. Liqun Qi & Ziyan Luo & Qing-Wen Wang & Xinzhen Zhang, 2022. "Quaternion Matrix Optimization: Motivation and Analysis," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 621-648, June.
    3. Kim Christensen & Mikkel Slot Nielsen & Mark Podolskij, 2021. "High-dimensional estimation of quadratic variation based on penalized realized variance," Papers 2103.03237, arXiv.org.
    4. Boos, Everton & Gonçalves, Douglas S. & Bazán, Fermín S.V., 2024. "Levenberg-Marquardt method with singular scaling and applications," Applied Mathematics and Computation, Elsevier, vol. 474(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:3:d:10.1007_s10957-019-01586-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.