IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v183y2019i2d10.1007_s10957-019-01568-x.html
   My bibliography  Save this article

Tensor Complementarity Problems—Part II: Solution Methods

Author

Listed:
  • Liqun Qi

    (Hangzhou Dianzi University
    The Hong Kong Polytechnic University)

  • Zheng-Hai Huang

    (Tianjin University)

Abstract

This work, with its three parts, reviews the state-of-the-art of studies for the tensor complementarity problem and some related models. In the first part of this paper, we have reviewed the theoretical developments of the tensor complementarity problem and related models. In this second part, we review the developments of solution methods for the tensor complementarity problem. It has been shown that the tensor complementarity problem is equivalent to some known optimization problems, or related problems such as systems of tensor equations, systems of nonlinear equations, and nonlinear programming problems, under suitable assumptions. By solving these reformulated problems with the help of structures of the involved tensors, several numerical methods have been proposed so that a solution of the tensor complementarity problem can be found. Moreover, based on a polynomial optimization model, a semidefinite relaxation method is presented so that all solutions of the tensor complementarity problem can be found under the assumption that the solution set of the problem is finite. Further applications of the tensor complementarity problem will be given and discussed in the third part of this paper.

Suggested Citation

  • Liqun Qi & Zheng-Hai Huang, 2019. "Tensor Complementarity Problems—Part II: Solution Methods," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 365-385, November.
  • Handle: RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01568-x
    DOI: 10.1007/s10957-019-01568-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-019-01568-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-019-01568-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shui-Lian Xie & Dong-Hui Li & Hong-Ru Xu, 2017. "An Iterative Method for Finding the Least Solution to the Tensor Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 119-136, October.
    2. Lixing Han, 2019. "A Continuation Method for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 949-963, March.
    3. Masakazu Kojima & Nimrod Megiddo & Shinji Mizuno, 1993. "A General Framework of Continuation Methods for Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 945-963, November.
    4. Zheng-Hai Huang & Liqun Qi, 2017. "Formulating an n-person noncooperative game as a tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 66(3), pages 557-576, April.
    5. Michael J. Todd & Yinyu Ye, 1990. "A Centered Projective Algorithm for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 15(3), pages 508-529, August.
    6. Masakazu Kojima & Nimrod Megiddo & Toshihito Noma, 1991. "Homotopy Continuation Methods for Nonlinear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 754-774, November.
    7. Z.H. Huang & J. Han & Z. Chen, 2003. "Predictor-Corrector Smoothing Newton Method, Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P 0 Function," Journal of Optimization Theory and Applications, Springer, vol. 117(1), pages 39-68, April.
    8. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    9. Zheng-Hai Huang & Tie Ni, 2010. "Smoothing algorithms for complementarity problems over symmetric cones," Computational Optimization and Applications, Springer, vol. 45(3), pages 557-579, April.
    10. Zheng-Hai Huang & Liqun Qi, 2019. "Tensor Complementarity Problems—Part I: Basic Theory," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 1-23, October.
    11. Maolin Che & Liqun Qi & Yimin Wei, 2016. "Positive-Definite Tensors to Nonlinear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 475-487, February.
    12. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    2. Zhenyu Ming & Liping Zhang & Liqun Qi, 2020. "Expected residual minimization method for monotone stochastic tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 871-896, December.
    3. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    4. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    5. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    2. Zheng-Hai Huang & Yu-Fan Li & Yong Wang, 2023. "A fixed point iterative method for tensor complementarity problems with the implicit Z-tensors," Journal of Global Optimization, Springer, vol. 86(2), pages 495-520, June.
    3. Ping-Fan Dai & Shi-Liang Wu, 2022. "The GUS-Property and Modulus-Based Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 195(3), pages 976-1006, December.
    4. Shouqiang Du & Weiyang Ding & Yimin Wei, 2021. "Acceptable Solutions and Backward Errors for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 260-276, January.
    5. Xuezhong Wang & Maolin Che & Yimin Wei, 2022. "Randomized Kaczmarz methods for tensor complementarity problems," Computational Optimization and Applications, Springer, vol. 82(3), pages 595-615, July.
    6. Hong-Bo Guan & Dong-Hui Li, 2020. "Linearized Methods for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 972-987, March.
    7. Xue-Li Bai & Zheng-Hai Huang & Xia Li, 2019. "Stability of Solutions and Continuity of Solution Maps of Tensor Complementarity Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(02), pages 1-19, April.
    8. Shouqiang Du & Maolin Che & Yimin Wei, 2020. "Stochastic structured tensors to stochastic complementarity problems," Computational Optimization and Applications, Springer, vol. 75(3), pages 649-668, April.
    9. Lixing Han, 2019. "A Continuation Method for Tensor Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 949-963, March.
    10. Zhenyu Ming & Liping Zhang & Liqun Qi, 2020. "Expected residual minimization method for monotone stochastic tensor complementarity problem," Computational Optimization and Applications, Springer, vol. 77(3), pages 871-896, December.
    11. Meng-Meng Zheng & Zheng-Hai Huang & Xiao-Xiao Ma, 2020. "Nonemptiness and Compactness of Solution Sets to Generalized Polynomial Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 80-98, April.
    12. Lu-Bin Cui & Yu-Dong Fan & Yi-Sheng Song & Shi-Liang Wu, 2022. "The Existence and Uniqueness of Solution for Tensor Complementarity Problem and Related Systems," Journal of Optimization Theory and Applications, Springer, vol. 192(1), pages 321-334, January.
    13. Shouqiang Du & Liping Zhang, 2019. "A mixed integer programming approach to the tensor complementarity problem," Journal of Global Optimization, Springer, vol. 73(4), pages 789-800, April.
    14. Jie Wang & Shenglong Hu & Zheng-Hai Huang, 2018. "Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 120-136, January.
    15. Shenglong Hu & Jie Wang & Zheng-Hai Huang, 2018. "Error Bounds for the Solution Sets of Quadratic Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 983-1000, December.
    16. Haibin Chen & Zheng-Hai Huang & Liqun Qi, 2017. "Copositivity Detection of Tensors: Theory and Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 174(3), pages 746-761, September.
    17. Jingyong Tang & Jinchuan Zhou, 2020. "Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones," Annals of Operations Research, Springer, vol. 295(2), pages 787-808, December.
    18. Tong-tong Shang & Guo-ji Tang, 2023. "Structured tensor tuples to polynomial complementarity problems," Journal of Global Optimization, Springer, vol. 86(4), pages 867-883, August.
    19. Tong-tong Shang & Guo-ji Tang, 2023. "Mixed polynomial variational inequalities," Journal of Global Optimization, Springer, vol. 86(4), pages 953-988, August.
    20. Yun-Bin Zhao & Duan Li, 2001. "On a New Homotopy Continuation Trajectory for Nonlinear Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 26(1), pages 119-146, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:183:y:2019:i:2:d:10.1007_s10957-019-01568-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.