IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v176y2018i1d10.1007_s10957-017-1192-2.html
   My bibliography  Save this article

A General Hybrid Optimization Strategy for Curve Fitting in the Non-uniform Rational Basis Spline Framework

Author

Listed:
  • Giulio Costa

    (Arts et Métiers ParisTech)

  • Marco Montemurro

    (Arts et Métiers ParisTech)

  • Jérôme Pailhès

    (Arts et Métiers ParisTech)

Abstract

In this paper, a general methodology to approximate sets of data points through Non-uniform Rational Basis Spline (NURBS) curves is provided. The proposed approach aims at integrating and optimizing the full set of design variables (both integer and continuous) defining the shape of the NURBS curve. To this purpose, a new formulation of the curve fitting problem is required: it is stated in the form of a constrained nonlinear programming problem by introducing a suitable constraint on the curvature of the curve. In addition, the resulting optimization problem is defined over a domain having variable dimension, wherein both the number and the value of the design variables are optimized. To deal with this class of constrained nonlinear programming problems, a global optimization hybrid tool has been employed. The optimization procedure is split in two steps: firstly, an improved genetic algorithm optimizes both the value and the number of design variables by means of a two-level Darwinian strategy allowing the simultaneous evolution of individuals and species; secondly, the optimum solution provided by the genetic algorithm constitutes the initial guess for the subsequent gradient-based optimization, which aims at improving the accuracy of the fitting curve. The effectiveness of the proposed methodology is proven through some mathematical benchmarks as well as a real-world engineering problem.

Suggested Citation

  • Giulio Costa & Marco Montemurro & Jérôme Pailhès, 2018. "A General Hybrid Optimization Strategy for Curve Fitting in the Non-uniform Rational Basis Spline Framework," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 225-251, January.
  • Handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1192-2
    DOI: 10.1007/s10957-017-1192-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-017-1192-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-017-1192-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Montemurro & Anita Catapano, 2016. "A New Paradigm for the Optimum Design of Variable Angle Tow Laminates," Springer Optimization and Its Applications, in: Aldo Frediani & Bijan Mohammadi & Olivier Pironneau & Vittorio Cipolla (ed.), Variational Analysis and Aerospace Engineering, pages 375-400, Springer.
    2. Marco Montemurro & Angela Vincenti & Paolo Vannucci, 2012. "A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 24-53, October.
    3. Marco Montemurro & Angela Vincenti & Paolo Vannucci, 2012. "A Two-Level Procedure for the Global Optimum Design of Composite Modular Structures—Application to the Design of an Aircraft Wing," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Panettieri & Marco Montemurro & Daniele Fanteria & Francesco Coccia, 2020. "Multi-scale Least-Weight Design of a Wing-Box Through a Global/Local Modelling Approach," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 776-799, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrico Panettieri & Marco Montemurro & Daniele Fanteria & Francesco Coccia, 2020. "Multi-scale Least-Weight Design of a Wing-Box Through a Global/Local Modelling Approach," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 776-799, December.
    2. Dossou Felix Kpadonou & Christian Fourcade & Paul Nazelle & Paolo Vannucci, 2020. "Anisotropy and Shape Optimal Design of Shells by the Polar–Isogeometric Approach," Journal of Optimization Theory and Applications, Springer, vol. 184(1), pages 61-97, January.
    3. Anita Catapano & Boris Desmorat & Paolo Vannucci, 2015. "Stiffness and Strength Optimization of the Anisotropy Distribution for Laminated Structures," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 118-146, October.
    4. Paolo Vannucci, 2013. "The Design of Laminates as a Global Optimization Problem," Journal of Optimization Theory and Applications, Springer, vol. 157(2), pages 299-323, May.
    5. Anita Catapano & Marco Montemurro, 2020. "Strength Optimisation of Variable Angle-Tow Composites Through a Laminate-Level Failure Criterion," Journal of Optimization Theory and Applications, Springer, vol. 187(3), pages 683-706, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:176:y:2018:i:1:d:10.1007_s10957-017-1192-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.