IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v169y2016i2d10.1007_s10957-015-0803-z.html
   My bibliography  Save this article

On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint

Author

Listed:
  • Yongxin Chen

    (University of Minnesota)

  • Tryphon T. Georgiou

    (University of Minnesota)

  • Michele Pavon

    (Università di Padova)

Abstract

We take a new look at the relation between the optimal transport problem and the Schrödinger bridge problem from a stochastic control perspective. Our aim is to highlight new connections between the two that are richer and deeper than those previously described in the literature. We begin with an elementary derivation of the Benamou–Brenier fluid dynamic version of the optimal transport problem and provide, in parallel, a new fluid dynamic version of the Schrödinger bridge problem. We observe that the latter establishes an important connection with optimal transport without zero-noise limits and solves a question posed by Eric Carlen in 2006. Indeed, the two variational problems differ by a Fisher information functional. We motivate and consider a generalization of optimal mass transport in the form of a (fluid dynamic) problem of optimal transport with prior. This can be seen as the zero-noise limit of Schrödinger bridges when the prior is any Markovian evolution. We finally specialize to the Gaussian case and derive an explicit computational theory based on matrix Riccati differential equations. A numerical example involving Brownian particles is also provided.

Suggested Citation

  • Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2016. "On the Relation Between Optimal Transport and Schrödinger Bridges: A Stochastic Control Viewpoint," Journal of Optimization Theory and Applications, Springer, vol. 169(2), pages 671-691, May.
  • Handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0803-z
    DOI: 10.1007/s10957-015-0803-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-015-0803-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-015-0803-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Filliger & M.-O. Hongler & L. Streit, 2008. "Connection between an Exactly Solvable Stochastic Optimal Control Problem and a Nonlinear Reaction-Diffusion Equation," Journal of Optimization Theory and Applications, Springer, vol. 137(3), pages 497-505, June.
    2. Mikami, Toshio & Thieullen, Michèle, 2006. "Duality theorem for the stochastic optimal control problem," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1815-1835, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montacer Essid & Michele Pavon, 2019. "Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 23-60, April.
    2. Conforti, Giovanni & Léonard, Christian, 2022. "Time reversal of Markov processes with jumps under a finite entropy condition," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 85-124.
    3. Yongxin Chen & Tryphon T. Georgiou & Michele Pavon, 2018. "Steering the Distribution of Agents in Mean-Field Games System," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 332-357, October.
    4. Gentil, Ivan & Léonard, Christian & Ripani, Luigia & Tamanini, Luca, 2020. "An entropic interpolation proof of the HWI inequality," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 907-923.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Daudin, 2022. "Optimal Control of Diffusion Processes with Terminal Constraint in Law," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 1-41, October.
    2. Lassalle, Rémi & Cruzeiro, Ana Bela, 2019. "An intrinsic calculus of variations for functionals of laws of semi-martingales," Stochastic Processes and their Applications, Elsevier, vol. 129(10), pages 3585-3618.
    3. Ivan Guo & Gregoire Loeper, 2018. "Path Dependent Optimal Transport and Model Calibration on Exotic Derivatives," Papers 1812.03526, arXiv.org, revised Sep 2020.
    4. Aníbal Coronel & Fernando Huancas & Esperanza Lozada & Marko Rojas-Medar, 2021. "The Dubovitskii and Milyutin Methodology Applied to an Optimal Control Problem Originating in an Ecological System," Mathematics, MDPI, vol. 9(5), pages 1-17, February.
    5. Toshio Mikami, 2021. "Stochastic optimal transport revisited," Partial Differential Equations and Applications, Springer, vol. 2(1), pages 1-26, February.
    6. Montacer Essid & Michele Pavon, 2019. "Traversing the Schrödinger Bridge Strait: Robert Fortet’s Marvelous Proof Redux," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 23-60, April.
    7. Luo, Peng & Menoukeu-Pamen, Olivier & Tangpi, Ludovic, 2022. "Strong solutions of forward–backward stochastic differential equations with measurable coefficients," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:169:y:2016:i:2:d:10.1007_s10957-015-0803-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.